Эхокардиография (ЭхоКГ) предоставляет возможность осмотра сердца, его камер, клапанов, эндокарда и т.д. с помощью ультразвука, т.е. является частью одного из наиболее распространенных способов лучевой диагностики — ультрасонографии.
Эхокардиография прошла достаточно длинный путь развития и совершенствования и теперь превратилась в одну из цифровых технологий, в которых аналоговая ответная реакция — индуцируемый в ультразвуковом датчике электрический ток — преобразуется в цифровую форму. В современном эхокардиографе цифровое изображение представляет собой матрицу, состоящую из чисел, собранных в колонки и строки (Smith H.-J., 1995). При этом каждое число соответствует определенному параметру ультразвукового сигнала (например, силе). Для получения изображения цифровая матрица переводится в матрицу видимых элементов — пикселей, где каждому пикселю в соответствии со значением в цифровой матрице присваивается соответствующий оттенок серой шкалы. Перевод полученного изображения в цифровые матрицы позволяет синхронизировать его с ЭКГ и записывать на оптический диск для последующего воспроизведения и анализа.
ЭхоКГ представляет собой рутинный, простой и бескровный метод диагностики заболеваний сердца, основанный на способности ультразвукового сигнала проникать через ткани и отражаться от них. Отраженный ультразвуковой сигнал затем принимается датчиком.
Ультразвук — это часть звукового спектра выше порога слышимости человеческого уха, волны с частотой свыше 20 000 Гц. Ультразвук генерируется датчиком, который помещается на кожу пациента в прекардиальной области, во втором — четвертом межреберьях слева от грудины, или у верхушки сердца. Могут быть и другие положения датчика (например, эпигастральный или супрастернальный доступы).
Основным компонентом ультразвукового датчика является один или несколько пьезоэлектрических кристаллов. Подача электрического тока на кристалл приводит к изменению его формы, наоборот — его сжатие приводит к генерации электрического тока в нем. Подача электрических сигналов на пьезокристалл приводит к серии его механических колебаний, способных генерировать ультразвуко-
вые волны. Попадание ультразвуковых волн на пьезоэлектрический кристалл приводит к его колебанию и появлению электрического потенциала в нем. В настоящее время производятся датчики ультразвуковых приборов, способные генерировать ультразвуковые частоты от 2,5 МГц до 10 МГц (1 МГц равен 1 000 000 Гц). Ультразвуковые волны генерируются датчиком в импульсном режиме, т.е. каждую секунду испускается ультразвуковой импульс продолжительностью 0,001 с. Остальные 0,999 с датчик работает как приемник ультразвуковых сигналов, отражающихся от структур тканей сердца. К недостаткам метода относится неспособность ультразвука проходить через газовые среды, поэтому для более плотного контакта ультразвукового датчика с кожей применяют специальные гели, наносимые на кожу и/или сам датчик.
В настоящее время для эхокардиографических исследований применяются так называемые фазовые и механические датчики. Первые состоят из множества пьезокристаллических элементов — от 32 до 128. Механические датчики состоят из округлого пластикового резервуара, наполненного жидкостью, где имеются вращающиеся или качающиеся элементы.
Современные ультразвуковые приборы, имеющие программы для диагностики сердечно-сосудистых заболеваний, способны дать четкое изображение структур сердца. Эволюция эхокардиографии привела к использованию в настоящее время различных эхокардиографических методик и режимов: чрезгрудная ЭхоКГ в В- и М-режимах, чреспищеводная ЭхоКГ, допплер-ЭхоКГ в режиме дуплексного сканирования, цветное допплеровское исследование, тканевой допплер, применение контрастных веществ и т.д.
Чрезгрудная (поверхностная, трансторакальная) эхокардиография — рутинная ультразвуковая методика исследования сердца, собственно, та методика, которую чаще всего традиционно называют ЭхоКГ, при которой ультразвуковой датчик контактирует с кожными покровами больного и основные приемы которой будут представлены ниже.
Эхокардиография — это современный бескровный метод, представляющий возможность с помощью ультразвука осматривать и измерять структуры сердца.
При исследовании методом чреспищеводной эхокардиографии
миниатюрный ультразвуковой датчик закреплен на приборе, напоминающем гастроскоп, и расположен в непосредственной близости к базальным отделам сердца — в пищеводе. При обычной, трансторакальной ЭхоКГ, применяются низкочастотные генераторы ультразвука, что увеличивает глубину проникновения сигнала, но снижает разрешающую способность. Нахождение ультразвукового датчика в непосредственной близости от изучаемого биологического объекта позволяет применять высокую частоту, что значительно увеличивает разрешение. Кроме того, таким образом предоставляется возможность осмотра отделов сердца, которые при трансторакальном доступе заслоняются от ультразвукового луча плотным материалом (например, левое предсердие — механическим протезом митрального клапана) с «обратной» стороны, со стороны базальных отделов сердца. Наиболее доступными для осмотра становятся оба предсердия и их ушки, межпредсердная перегородка, легочные вены, нисходящая аорта. В то же время для чреспищеводной эхокардиографии менее доступна верхушка сердца, поэтому должны использоваться оба метода.
Показаниями для чреспищеводной ЭхоКГ являются.
1. Инфекционный эндокардит — при низкой информативности чрезгрудной ЭхоКГ, во всех случаях эндокардита искусственного клапана сердца, при эндокардите аортального клапана для исключения парааортального абсцесса.
2. Ишемический инсульт, ишемическая мозговая атака, случаи эмболий в органы большого круга, особенно у лиц младше 50 лет.
3. Осмотр предсердий перед восстановлением синусового ритма, особенно при наличии клиники тромбоэмболий в анамнезе и при противопоказании к назначению антикоагулянтов.
4. Искусственные клапаны сердца (при соответствующей клинической картине).
5. Даже при нормальной трансторакальной ЭхоКГ, для определения степени и причины митральной регургитации, подозрении на эндокардит.
6. Пороки клапанов сердца, для определения вида хирургического лечения.
7. Дефект межпредсердной перегородки. Для определения размера и вариантов хирургического лечения.
8. Болезни аорты. Для диагностики расслоения аорты, интрамуральной гематомы.
9. Интраоперационный мониторинг для мониторирования функции левого желудочка (ЛЖ) сердца, выявления остаточной регургитации по окончании клапансохраняющей кардиохирургической операции, исключения наличия воздуха в полости ЛЖ по окончании операции на сердце.
10. Плохое «ультразвуковое окно», исключающее трансторакальное исследование (должно быть крайне редким показанием).
Двухмерная эхокардиография (В-режим) по меткому определению Х. Файгенбаума (H. Feigenbaum, 1994) — это «хребет» ультразвуковых кардиологических исследований, потому что ЭхоКГ в В-режиме может применяться как самостоятельное исследование, а все остальные методики, как правило, проводятся на фоне двухмерного изображения, которое служит для них ориентиром.
Чаще всего эхокардиографическое исследование производится в положении обследуемого на левом боку. Датчик сначала располагается парастернально во втором или третьем межреберьях. Из этого доступа прежде всего получают изображение сердца по длинной оси. При эхолокации сердца здорового человека визуализируются (в направлении от датчика к дорзальной поверхности тела) сначала неподвижный объект — ткани передней стенки грудной клетки, затем передняя стенка правого желудочка (ПЖ), далее —
Рис. 4.1. Эхокардиографическое изображение сердца по длинной оси из парастернальной позиции датчика и его схема:
ПГС — передняя грудная стенка; ПЖ — правый желудочек; ЛЖ — левый желудочек; АО — аорта; ЛП — левое предсердие; МЖП — межжелудочковая перегородка; ЗС — задняя стенка левого желудочка
полость ПЖ, межжелудочковая перегородка и корень аорты с аортальным клапаном, полость ЛЖ и левого предсердия (ЛП), разделенные митральным клапаном, задняя стенка ЛЖ и левого предсердия (рис. 4.1).
Для получения изображения сердца по короткой оси датчик в той же позиции поворачивают на 90°, не изменяя его пространственной ориентации. Затем, изменяя наклон датчика, получают срезы сердца по короткой оси на различных уровнях (рис. 4.2а-4.2г).
Рис. 4.2 а. Схема получения изображений срезов сердца по короткой оси на различных уровнях:
АО — уровень аортального клапана; МКа — уровень основания передней створки митрального клапана; МКб — уровень концов створок митрального клапана; ПМ — уровень папиллярных мышц; ВЕРХ — уровень верхушки за основанием папиллярных мыш
Рис. 4.2 б. Эхокардиографический срез сердца по короткой оси на уровне аортального клапана и его схема: ПКС, ЛКС, НКС — правая коронарная, левая коронарная и некоронарная створки аортального клапана; ПЖ — правый желудочек; ЛП — левое предсердие; ПП — правое предсердие; ЛА — легочная артерия
Рис. 4.2 в. Эхокардиографический срез сердца по короткой оси на уровне створок митрального клапана и его схема:
ПЖ — правый желудочек; ЛЖ — левый желудочек; ПСМК — передняя створка митрального клапана; ЗСМК — задняя створка митрального клапана
Рис. 4.2 г. Эхокардиографический срез сердца по короткой оси на уровне папиллярных мышц и его схема:
ПЖ — правый желудочек; ЛЖ — левый желудочек; ПМ — папиллярные мышцы левого желудочка
Для визуализации обоих желудочков сердца и предсердий одновременно (четырехкамерная проекция) ультразвуковой датчик устанавливается у верхушки сердца перпендикулярно к длинной и сагиттальной осям тела (рис. 4.3).
Четырехкамерное изображение сердца можно также получить, расположив датчик в эпигастрии. Если же эхокардиографический датчик, находящийся у верхушки сердца, поворачивают по его оси на 90°, правый желудочек и правое предсердие смещаются за левые отделы сердца, и таким образом получают двухкамерное изображение сердца, в котором визуализируются полости ЛЖ и ЛП (рис. 4.4).
Рис. 4.3. Четырехкамерное эхокардиографическое изображение сердца из позиции датчика у верхушки сердца:
ЛЖ — левый желудочек; ПЖ — правый желудочек; ЛП — левое предсердие; ПП — правое предсердие
Рис. 4.4. Двухкамерное эхокардиографическое изображение сердца из положения датчика у его верхушки: ЛЖ — левый желудочек; ЛП — левое предсердие
В современных ультразвуковых приборах для улучшения качества визуализации в режиме двухмерной ЭхоКГ используются различные технические разработки. Примером такой методики стала так называемая вторая гармоника. С помощью второй гармоники частота отраженного сигнала увеличивается в два раза, и таким образом ком-
пенсируются искажения, которые неизбежно возникают при прохождении ультразвукового импульса через ткани. Такой технический прием уничтожает артефакты и значительно увеличивает контрастность эндокарда в В-режиме, но при этом снижается разрешающая способность метода. Кроме того, при применении второй гармоники створки клапанов и межжелудочковая перегородка могут выглядеть утолщенными.
Чрезгрудная двухмерная эхокардиография позволяет визуализировать сердце в реальном масштабе времени и является ориентиром при исследовании сердца в М-режиме и в режиме ультразвукового допплера.
Ультразвуковое исследование сердца в М-режиме — одна из первых эхокардиографических методик, которая применялась еще до создания приборов, с помощью которых можно получать двухмерное изображение. В настоящее время производятся датчики, способные одновременно работать в В- и М-режимах. Для получения М-режима курсор, отражающий прохождение ультразвукового луча, накладывается на двухмерное эхокардиографическое изображение (см. рис. 4.5-4.7). При работе в М-режиме получают график движения каждой точки биологического объекта, через который проходит ультразвуковой луч. Таким образом, если курсор проходит на уровне корня аорты (рис. 4.5), то сначала получают эхо-ответ в виде прямой линии от передней грудной стенки, затем волнистую линию, отражающую движения передней стенки ПЖ сердца, следом — движение передней стенки корня аорты, за которым видны тонкие линии, отражающие движения створок (чаще всего двух) аортального клапана, движение задней стенки корня аорты, за которой расположена полость ЛП и, наконец, М-эхо задней стенки ЛП.
При прохождении курсора на уровне створок митрального клапана (см. рис. 4.6) (при синусовом ритме сердца обследуемого) получают от них эхосигналы в виде М-образного движения передней створки и W-образного движения задней створки митрального клапана. Такой график движения створок митрального клапана создается, потому что в диастолу, сначала в фазу быстрого наполнения, когда давление в левом предсердии начинает превышать давление наполнения в ЛЖ, кровь проходит в полость и происходит раскрытие створок. Затем, примерно к середине диастолы, давление между
Рис. 4.5. Одновременная запись двухмерного эхокардиографического изображения сердца и М-режима на уровне корня аорты:
ПГС — передняя грудная стенка; ПЖ — правый желудочек; АО — просвет корня аорты; ЛП — левое предсердие
Рис. 4.6. Одновременная запись двухмерного эхокардиографического изображения сердца и М-режима на уровне концов створок митрального клапана:
ПСМК — передняя створка митрального клапана; ЗСМК — задняя створка митрального клапана
предсердием и желудочком выравнивается, движение крови замедляется и створки сближаются (диастолическое прикрытие створок митрального клапана в период диастазиса). И наконец, следует систола предсердий, из-за чего створки раскрываются вновь, а затем закрываются с началом систолы ЛЖ сердца. Аналогично работают и створки трехстворчатого клапана.
Для получения эхокардиографического изображения межжелудочковой перегородки и задней стенки ЛЖ сердца в М-режиме эхокардиографический курсор на двухмерном изображении устанавливают примерно на середине хорд митрального клапана (см. рис. 4.7). В этом случае после изображения неподвижной передней грудной стенки визуализируется М-эхо движения передней стенки ПЖ сердца, затем — межжелудочковой перегородки и далее задней стенки ЛЖ. В полости ЛЖ могут быть видны эхосигналы от движущихся хорд митрального клапана.
Рис. 4.7. Одновременная запись двухмерного эхокардиографического изображения сердца и М-режима на уровне хорд митрального клапана. Пример измерения конечного диастолического (КДР) и конечного систолического (КСР) размеров левого желудочка сердца.
ПГС — передняя грудная стенка; ПЖ — полость правого желудочка;
МЖП — межжелудочковая перегородка; ЗСЛЖ — задняя стенка левого
желудочка; ЛЖ — полость левого желудочка
Смысл ультразвукового исследования сердца в М-режиме заключается в том, что именно в этом режиме выявляются самые тонкие движения стенок сердца и его клапанов. Достижением последнего времени стал так называемый физиологический М-режим, в котором курсор способен вращаться вокруг центральной точки и смещаться, в результате чего имеется возможность оценить количественно степень утолщения любого сегмента ЛЖ сердца (рис. 4.8).
Рис. 4.8. Эхокардиографический срез сердца по короткой оси на уровне папиллярных мышц и исследование локальной сократимости десятого (нижнего промежуточного) и одиннадцатого (переднего промежуточного) сегментов с помощью физиологического М-режима
При визуализации сердца в М-режиме получают графическое изображение движения каждой точки его структур, через который проходит ультразвуковой луч. Это дает возможность оценить тонкие движения клапанов и стенок сердца, а также рассчитать основные параметры гемодинамики.
Обычный М-режим дает возможность достаточно точного измерения линейных размеров левого желудочка в систолу и диастолу (см. рис. 4.7) и расчета показателей гемодинамики и систолической функции левого желудочка сердца.
В повседневной практике для определения сердечного выброса часто рассчитывают объемы ЛЖ сердца в М-режиме эхокардиографического исследования. С этой целью в программу большинства ультразвуковых приборов заложена формула L. Teicholtz (1972):
где V — конечный систолический (КСО) или конечный диастолический (КДО) объемы левого желудочка сердца, а D — его конечный систолический (КСР) или конечный диастолический (КДР) размеры (см. рис. 4.7). Ударный объем сердца в мл (УО) затем вычисляется вычитанием конечного систолического объема ЛЖ сердца из конечного диастолического:
Произведенные с помощью М-режима измерения объемов ЛЖ сердца и расчет ударного и минутного объемов сердца не могут учесть состояния его верхушечной области. Поэтому в программу современных эхокардиографов заложен так называемый метод Симпсона, позволяющий рассчитывать объемные показатели ЛЖ в В-режиме. Для этого ЛЖ сердца разделяется на несколько срезов в четырехкамерной и двухкамерной позициях от верхушки сердца (рис. 4.9), и его объемы (КДО и КСО) могут рассматриваться в качестве суммы объемов цилиндров или усеченных конусов, каждый из которых вычисляется по соответствующей формуле. Современное оборудование дает возможность разбивать полость ЛЖ на 5-20 таких срезов.
Рис. 4.9. Измерение объемов левого желудочка сердца в В-режиме. Два верхних изображения — четырехкамерная проекция, диастола и систола, два нижних изображения — двухкамерная проекция, диастола и систола
Считается, что метод Симпсона дает возможность более точного определения его объемных показателей, т.к. при исследовании в расчет входит область его верхушки, сократимость которой не учитывается при определении объемов по методу Тейкхольца. Минутный объем сердца (МО) вычисляют умножением УО на число сердечных сокращений, а, соотнеся эти величины с площадью поверхности тела, получают ударный и сердечный индексы (УИ и СИ).
В качестве показателей сократимости левого желудочка сердца чаще всего используют следующие величины:
степень укорочения его переднезаднего размера dS:
dS = {(КДР — КСР)/КДР} ? 100\%,
скорость циркулярного укорочения волокон миокарда Vcf :
Vcf = (КДР — КСР)/(КДР ? dt) ? с-1,
где dt — время сокращения (период изгнания) левого желудочка,
фракция изгнания (ФИ) левого желудочка сердца:
ФИ = (УО/КДО) ? 100\%.
Допплер-эхокардиография — еще одна ультразвуковая методика, без которой невозможно представить сегодня исследования сердца. Допплер-ЭхоКГ представляет собой способ измерения скорости и определения направления потоков крови в полостях сердца и сосудах. Метод основан на эффекте К. Дж. Допплера, описанном им в 1842 г. (C.J. Doppler, 1842). Суть эффекта заключается в том, что если источник звука находится в неподвижном состоянии, то длина волны, генерируемая им, и ее частота остаются постоянными. Если источник звука (и любых других волн) движется в направлении воспринимающего устройства или уха человека, то длина волны уменьшается, а ее частота возрастает. Если же источник звука перемещается в сторону от воспринимающего устройства, то длина волны возрастает, а ее частота падает. Классическим примером является свисток движущегося поезда или сирены скорой помощи — когда они приближаются к человеку, то кажется, что высота звука, т.е. частота его волны, возрастает, если же удаляется, то высота звука и его час-
тота снижаются. Это явление используют для определения скорости движения объектов с помощью ультразвука. Если необходимо измерить скорость потока крови, объектом исследования должен стать форменный элемент крови — эритроцит. Однако сам эритроцит не излучает никаких волн. Поэтому ультразвуковой датчик генерирует волны, которые отражаются от эритроцита и принимаются приемным устройством. Допплеровский сдвиг частот представляет собой разность между частотой, отраженной от движущегося объекта и частотой волны, испускаемой генерирующим устройством. Исходя из этого скорость объекта (в нашем случае — эритроцита) будет измеряться с помощью уравнения:
где V — скорость движения объекта (эритроцита), fd — разность между генерируемой и отраженной ультразвуковыми частотами, С — скорость звука, ft — частота генерируемого ультразвукового сигнала, cos θ — косинус угла между направлением ультразвукового луча и направлением движения исследуемого объекта. Поскольку значение косинуса угла от 20° до 0 градусов близко к 1, в этом случае его значением можно пренебречь. Если направление движения объекта перпендикулярно к направлению испускаемого ультразвукового луча, а косинус угла в 90° равен 0, рассчитать такое уравнение невозможно и, следовательно, невозможно определить скорость движения объекта. Для правильного определения скорости крови направление длинной оси датчика должно соответствовать направлению ее потока.
Эхокардиография является наиболее простым, доступным и удобным методом оценки наиболее важных показателей сократимости сердца (прежде всего фракции изгнания ЛЖ) и параметров гемодинамики (ударного объема и индекса, сердечного выброса и индекса). Она является методом диагностики клапанной патологии, дилатации полостей сердца, локального и/или диффузного гипокинеза, кальциноза структур сердца, тромбоза и аневризм, наличия жидкости в полости перикарда.
Основные допплер-ЭхоКГ методики, позволяющие проводить исследования с помощью современных ультразвуковых приборов,
являются различными вариантами сочетания генератора и приемника ультразвуковых волн и воспроизведения скорости и направления потоков на экране. В настоящее время эхокардиограф предоставляет возможность использовать, по крайней мере, три варианта режима ультразвукового допплера: так называемые постоянно-волновой, импульсно-волновой и цветной допплер. Все эти виды допплер-ЭхоКГ исследований проводятся при использовании двухмерного изображения сердца в режиме В-сканирования, которое служит ориентиром для правильной установки курсора того или иного допплера.
Методика постоянно-волновой эходопплерографии представляет собой способ определения скорости движения крови с помощью двух устройств: генератора, непрерывно продуцирующего ультразвуковые волны с постоянной частотой, и также непрерывно работающего приемника. В современном оборудовании оба устройства объединены в один датчик. При таком подходе все попадающие в зону ультразвукового луча объекты, например эритроциты, посылают отраженный сигнал на принимающее устройство, и в результате информация представляет собой сумму скоростей и направлений всех, попавших в зону луча частиц крови. При этом диапазон измерений скорости движения достаточно высок (до 6 м/с и более), однако определить локализацию максимальной скорости в потоке, начало и конец потока, его направление не представляется возможным. Такого объема информации недостаточно для кардиологических исследований, где требуется определение показателей потока крови в конкретной области сердца. Решением проблемы стало создание методики импульсно-волнового допплера.
При импульсно-волновой допплер-эхокардиографии, в отличие от постоянно-волнового режима, один и тот же датчик генерирует ультразвук и принимает его, аналогично используемому при ЭхоКГ: ультразвуковой сигнал (импульс) продолжительностью 0,001 с продуцируется им один раз в секунду, а остальные 0,999 с тот же датчик работает как приемник ультразвукового сигнала. Так же как и при постоянно-волновой допплерографии скорость движущегося потока определяется по разности частот генерируемого и получаемого отраженного ультразвукового сигнала. Однако применение импульсного датчика позволило измерять скорость движения крови в заданном объеме. Использование прерывистого ультразвукового потока, кроме того, позволило употребить для допплерографии тот же датчик, что и для ЭхоКГ. При этом курсор, на котором имеется метка, ограни-
чивающая так называемый контрольный объем, в котором измеряются скорость и направление кровотока, выводится на двухмерное изображение сердца, полученное в В-режиме. Однако импульсная допплер-ЭхоКГ имеет ограничения, связанные с появлением нового параметра — частоты генерации ультразвуковых импульсов (pulsed repetition frequency, PRF). Оказалось, что такой датчик способен определять скорость объектов, которая создает разность генерируемой и отраженной частот, не превышающую 1/2 PRF. Этот максимальный уровень воспринимаемых частот импульсного допплер-эхокардиографического датчика называется числом Найквиста (число Найквиста равно 1/2 PRF). Если в исследуемом потоке крови имеются частицы, движущиеся со скоростью, создающей сдвиг (разность) частот, превышающую точку Найквиста, то определить их скорость с помощью импульсной допплерографии невозможно.
Цветное допплеровское сканирование — вид допплеровского исследования, при котором скорость и направление потока кодируется определенным цветом (чаще всего в сторону датчика — красным, от датчика — синим). Цветное изображение внутрисердечных потоков по сути является вариантом импульсно-волнового режима, когда применяется не один контрольный объем, а множество (250-500), формирующих так называемый растр. Если в площади, занимаемой растром, потоки крови являются ламинарными и не выходят по скорости за пределы точки Найквиста, то они окрашиваются в синий или красный цвет в зависимости от своего направления по отношению к датчику. Если скорости потоков выходят за эти пределы, и/или поток становится турбулентным, то в растре появляется мозаичность, желтые и зеленые цвета.
Задачами цветового допплеровского сканирования являются выявление регургитации на клапанах и внутрисердечных шунтов, а также полуколичественная оценка степени регургитации.
Тканевой допплер кодирует в виде цветовой карты скорости и направление движения структур сердца. Допплеровский сигнал, отражающийся от миокарда, створок и фиброзных колец клапанов и т.д., имеет значительно меньшую скорость и большую амплитуду, чем получаемый от частиц в кровотоке. При данной методике скорости и амплитуды сигнала, характерные для кровотока, отсекаются с помощью фильтров, и получают двухмерные изображения или М-режим, на которых с помощью цвета определяются направление и скорость движения любого отдела миокарда или фиброзных колец атриовен-
трикулярных клапанов. Метод используется для выявления асинхронии сокращения (например, при феномене Вольфа-ПаркинсонаУайта), изучения амплитуды и скорости сокращения и расслабления стенок ЛЖ для выявления региональных дисфунций, возникающих, например, при ишемии, в т.ч. при стресс-тесте с добутамином.
При допплер-эхокардиографических исследованиях применяют все разновидности допплеровских датчиков: сначала с помощью импульсного и/или цветного допплера определяют скорость и направление потоков крови в камерах сердца, затем, если выявляется высокая скорость потока, превышающая его возможности, она измеряется с помощью постоянно-волнового.
Внутрисердечные потоки крови имеют в разных камерах сердца и на клапанах свои особенности. В здоровом сердце они практически всегда представляют собой варианты ламинарного движения форменных элементов крови. При ламинарном потоке почти все слои крови движутся в сосуде или полости желудочков или предсердий приблизительно с одной скоростью и в одном направлении. Турбулентный поток подразумевает наличие в нем завихрений, приводящих к разнонаправленному движению его слоев и частиц крови. Турбулентность обычно создается в местах, где возникает перепад давления крови — например при стенозах клапанов, при их недостаточности, в шунтах.
Рис. 4.10. Допплер-эхокардиграфия корня аорты здорового человека в импульсно-волновом режиме. Объяснение в тексте
На рисунке 4.10 демонстрируется допплерограмма в импульсноволновом режиме потока крови в корне аорты здорового человека. Контрольный объем курсора допплера находится на уровне створок аортального клапана, курсор установлен параллельно длинной оси аорты. Допплерографическое изображение представлено в виде спектра скоростей, направленных вниз от нулевой линии, что соответствует направлению потока крови в сторону от датчика, расположенного у верхушки сердца. Выброс крови в аорту происходит в систолу ЛЖ сердца, начало его совпадает с зубцом S, а конец — с концом зубца T синхронно записанной ЭКГ.
Спектр скоростей потока крови в аорте по своим очертаниям напоминает треугольник с пиком (максимальной скоростью), несколько смещенной к началу систолы. В легочной артерии (ЛА) пик кровотока находится практически в середине систолы ПЖ. Большую часть спектра занимает хорошо видимое на рис. 4.10 так называемое темное пятно, отражающее наличие ламинарного характера центральной части кровотока в аорте, и только по краям спектра имеется турбулентность.
Для сравнения на рис. 4.11 представлен пример допплер-ЭхоКГ в импульсно-волновом режиме потока крови через нормально функционирующий механический протез аортального клапана.
Рис. 4.11. Допплер-эхокардиография в импульсно-волновом режиме больного с нормально функционирующим механическим протезом аортального клапана. Объяснение в тексте
На протезах клапанов всегда имеется небольшой перепад давления, который вызывает умеренное ускорение и турбулентность кровотока. На рисунке 4.11 хорошо видно, что контрольный объем допплера, также как и на рис. 4.10, установлен на уровне аортального клапана (в данном случае искусственного). Хорошо видно, что максимальная (пиковая) скорость потока крови в аорте у этого больного значительно выше, а «темное пятно» значительно меньше, преобладает турбулентный кровоток. Кроме того, хорошо различим допплеровский спектр скоростей выше изолинии — это ретроградный поток в направлении верхушки ЛЖ, представляющий собой небольшую регургитацию, которая, как правило, имеется на искусственных клапанах сердца.
Потоки крови на атриовентрикулярных клапанах имеют совершенно другой характер. На рисунке 4.12 представлен допплеровский спектр скоростей тока крови на митральном клапане.
Рис. 4.12. Допплер-эхокардиография трансмитрального потока крови здорового человека в импульсно-волновом режиме. Объяснение в тексте
Метка контрольного объема в данном случае установлена несколько выше точки смыкания створок митрального клапана. Поток представлен двухпиковым спектром, направленным выше нулевой линии к датчику. Поток преимущественно ламинарный. По форме скоростной спектр потока напоминает движение передней створки митрального клапана в М-режиме, что объясняется теми же процессами:
первый пик потока, называемый пиком Е, представляет собой ток крови через митральный клапан в фазу быстрого наполнения, второй пик — пик А — поток крови в течение систолы предсердий. В норме пик Е больше пика А, при диастолической дисфункции вследствие нарушения активного расслабления ЛЖ, повышения его жесткости и т.д., соотношение Е/А на каком-то этапе становится меньше 1. Этот признак широко используется для исследования диастолической функции ЛЖ сердца. Кровоток через правое атриовентрикулярное отверстие имеет сходную форму с трансмитральным.
По ламинарному кровотоку можно рассчитать скорость кровотока. Для этого рассчитывается так называемый интеграл линейной скорости кровотока за один сердечный цикл, который представляет собой площадь, занимаемую допплеровским спектром линейных скоростей потока. Поскольку форма спектра скоростей потока в аорте близка к треугольной, то площадь его можно будет считать равной произведению пиковой скорости на период изгнания крови из ЛЖ, деленному на два. В современных ультразвуковых приборах имеется приспособление (джойстик или трекболл), дающее возможность обводить спектр скоростей, после чего его площадь рассчитывается автоматически. Определение с помощью импульсноволнового допплера ударного выброса крови в аорту представляется важным, т.к. величина измеренного таким способом ударного объема в меньшей степени зависит от величины митральной и аортальной регургитации.
Для подсчета объемной скорости кровотока следует умножить интеграл его линейной скорости на площадь поперечного сечения анатомического образования, в котором он измеряется. Наиболее обоснованным является подсчет УО крови по кровотоку в путях оттока ЛЖ сердца, так как показано, что диаметр, а следовательно, и площадь выходного тракта ЛЖ в течение систолы изменяются мало. В современных ультразвуковых диагностических системах имеется возможность точного определения диаметра путей оттока из ЛЖ в В- или М-режиме (либо на уровне фиброзного кольца аортального клапана, либо от места перехода мембранозной части межжелудочковой перегородки до основания передней створки митрального клапана) с последующим введением его в формулу в программе расчета ударного выброса по ультразвуковому допплеру:
УО = ? S мл,
где — интеграл линейной скорости выброса крови в аорту за один сердечный цикл в см/с, S — площадь выносного тракта левого желудочка сердца.
С помощью импульсно-волновой допплер-ЭхоКГ диагностируются клапанные стенозы и недостаточность клапанов, можно определить степень клапанной недостаточности. Для вычисления перепада (градиента) давления на стенозированном клапане чаще всего приходится использовать постоянно-волновой допплер. Это объясняется тем, что на стенозированных отверстиях возникают очень высокие скорости кровотока, которые слишком велики для импульсно-волнового датчика.
Градиент давления вычисляется с помощью упрощенного уравнения Бернулли:
dP = 4V2,
где dP — градиент давления на стенозированном клапане в мм рт.ст., У — линейная скорость потока в см/с дистальней стеноза. Если в формулу вводится величина пиковой линейной скорости, рассчитывается пиковый (наибольший) градиент давления, если интеграл линейной скорости — средний. Допплер-ЭхоКГ также дает возможность определить площадь стенозированного отверстия.
Рис. 4.13. Допплер-эхокардиография кровотока в левом желудочке в режиме цветного сканирования. Объяснение в тексте
Если в площади растра появляется турбулентный поток и/или потоки с высокими скоростями, это проявляется появлением неравномерного мозаичного окрашивания потока. Цветная допплер-ЭхоКГ дает прекрасное представление о потоках внутри камер сердца и о степени клапанной недостаточности.
На рисунке 4.13 (а также см. на вклейке) демонстрируется цветное сканирование потоков в ЛЖ сердца.
Синий цвет потока отражает движение от датчика, т.е. выброс крови в аорту из ЛЖ. На второй фотографии, представленной на рис. 4.13, поток крови в растре окрашен в красный цвет, следовательно, кровь движется по направлению к датчику, к верхушке ЛЖ — это нормальный трансмитральный поток. Хорошо видно, что потоки практически везде ламинарные.
На рисунке 4.14 (а также см. на вклейке) представлены два примера определения степени недостаточности атриовентрикулярных клапанов с помощью цветного допплеровского сканирования.
В левой части рис. 4.14 представлен пример цветной допплер-эхокардиограммы больного с митральной недостаточностью (регургитацией). Видно, что растр цветного допплера установлен на митральном клапане и над левым предсердием. Хорошо видна струя крови, кодируемая при цветном допплеровском сканировании в виде мозаичного рисунка. Это говорит о наличии высоких скоростей и турбулентности в регургитационном потоке. Справа на рис. 4.14 представлена картина недостаточности трехстворчатого клапана, выявленная с помощью цветного допплеровского сканирования, хорошо видна мозаичность цветового сигнала.
Рис. 4.14. Определение степени регургитации на атриовентрикулярных клапанах с помощью цветной допплер-эхокардиографии. Объяснение в тексте
В настоящее время существует несколько вариантов определения степени клапанной недостаточности. Самый простой из них — это измерение длины струи регургитации относительно анатомических ориентиров. Так, степень недостаточности атриовентрикулярных клапанов может определяться следующим образом: струя заканчивается сразу за створками клапана (митрального или трикуспидального) — I степень, распространяется на 2 см ниже створок — II степень, до середины предсердия — III степень, на все предсердие — IV степень. Степень недостаточности аортального клапана может рассчитываться аналогично: струя регургитации достигает середины створок митрального клапана — I степень, струя аортальной регургитации достигает конца створок митрального клапана —
II степень, струя регургитации достигает папиллярных мышц —
III степень, струя распространяется на весь желудочек — IV степень аортальной недостаточности.
Это самые примитивные, но широко используемые в практике, способы расчета степени клапанной недостаточности. Струя регургитации, будучи достаточно длинной, может быть тонкой и, следовательно, гемодинамически незначимой, может отклоняться в камере сердца в сторону и, будучи гемодинамически значимой, не достигать анатомических образований, определяющих ее тяжелую степень. Поэтому существует множество других вариантов оценки выраженности клапанной недостаточности.
Ультразвуковые методики исследования (УЗИ) сердца постоянно совершенствуются. Все большее распространение получает чреспищеводная ЭхоКГ, о которой сказано выше. Еще меньшего размера датчик применяется при внутрисосудистых УЗИ. При этом, по-видимому, внутрикоронарное определение консистенции атеросклеротической бляшки, ее площади, выраженности кальцификации и т.д. являются единственным прижизненным методом оценки ее состояния. Разработаны методы получения трехмерного изображения сердца с помощью ультразвука.
Способность ультразвукового допплера определять скорость и направление потоков в полостях сердца и в крупных сосудах позволила применить физические формулы и рассчитать с приемлемой точностью объемные параметры кровотока и перепады давления в местах стеноза, а также степень клапанной недостаточности.
Становится повседневной практикой применение нагрузочных проб с одновременной визуализацией структур сердца с помощью ультразвука. Стресс-эхокардиография используется в основном для диагностики ишемической болезни сердца. Метод основан на том факте, что в ответ на ишемию миокард отвечает снижением сократимости и нарушением расслабления пораженной области, которые возникают раньше, чем изменения на электрокардиограмме. Чаще всего в качестве нагрузочного агента применяется добутамин, который увеличивает кислородный запрос миокарда. При этом при малых дозах добутамина увеличивается сократимость миокарда и начинают сокращаться его гибернированные участки (если они имеются). На этом основано выявление с помощью добутамин-стресс-эхокардиографии в В-режиме зон жизнеспособного миокарда. Показанием для проведения стресс-ЭхоКГ с добутамином являются: клинически неясные случаи с малоинформативной электрокардиографической нагрузочной пробой, невозможность теста с физической нагрузкой из-за поражения локомоторного аппарата больного, наличие на ЭКГ изменений, исключающих диагностику преходящей ишемии (блокада левых ветвей пучка Гиса, синдром Вольфа-Паркинсона-Уайта, смещение сегмента ST из-за выраженной гипертрофии левого желудочка), стратификация риска у больных, перенесших ИМ, локализация бассейна ишемии, выявление жизнеспособного миокарда, определение гемодинамической значимости аортального стеноза при низкой сократимости ЛЖ сердца, выявление появления или усугубления митральной регургитации при стрессе.
В настоящее время становятся распространенными нагрузочные тесты с одновременной визуализацией структур сердца с помощью ультразвука. Стресс-эхокардиография используется в основном для диагностики ишемической болезни сердца. Чаще всего в качестве нагрузочного агента применяется вводимый внутривенно добутамин, который увеличивает кислородный запрос миокарда, что при наличии стенозов коронарных артерий вызывает его ишемию. На ишемию миокард отвечает снижением локальной сократимости в зоне стенозированного сосуда, что и выявляется с помощью эхокардиографии.
В настоящей главе представлены наиболее широко применяемые в практической деятельности методы ультразвукового исследования сердца.
Появление миниатюрных ультразвуковых датчиков привело к созданию новых методик (чреспищеводная ЭхоКГ, внутрисосудистое ультразвуковое исследование), при которых имеется возможность визуализации структур, недоступных для чрезгрудной ЭхоКГ.
Эхокардиографическая диагностика конкретных заболеваний сердца будет изложена в соответствующих разделах руководства.