Изменения структурной организации хромосом. Хромосомные мутации

Несмотря на эволюционно отработанный механизм сохранения постоянной физико-химической и морфологической организации хромосом в ряду клеточных поколений, эта организация может изменяться. В основе изменения структуры хромосом, как правило, лежат первоначальные изменения их целостности — разрывы, приводящие к разного рода перестройкам. Хромосомные перестройки называются хромосомными мутациями или хромосомными аберрациями.

С одной стороны, разрывы происходят закономерно в мейозе в связи с кроссинговером и сопровождаются обменом взаимосоответствующими участками между гомологичными хромосомами. Нарушения хода кроссинговера, приводящие к обмену количественно неравнозначными участками наследственного материала (ДНК), приводит к образованию новых по генному составу групп сцепления, характеризующихся либо утратой (делеция), либо удвоением (дупликация) определенных сайтов (нуклеотидных последовательностей, генов). С другой стороны, разрывы хромосом могут вызываться воздействием на них мутагенов. Наиболее часто в роли мутагенов выступают физические факторы (ионизирующие излучения), химические соединения, вирусы. Иногда нарушение структурной целостности хромосомы сопровождается поворотом участка между двумя разрывами на 180° с последующим встраиванием этого участка в хромосому — инверсия. В зависимости от того, включает ли инвертируемый участок центромеру или нет, различают соответственно перицентрические и парацентрические инверсии. Если участок, отделившийся от хромосомы вследствие ее разрыва, лишен центромеры, он может быть утрачен клеткой при очередном митозе. Нередко, однако, такой участок прикрепляется к другой хромосоме — транслокация. Часто две поврежденные негомологичные хромосомы обмениваются отделившимися от них участками — реци-прокная транслокация. Если оторвавшийся участок присоединяется к своей же хромосоме, но в новом месте, говорят о транспозиции (рис. 4.9). Известны примеры транслокаций целых хромосом. Так, синдром Дауна имеет несколько цитогенетических форм. У одной части пациентов с этим синдромом определяются три отдельных хромосомы 21,

Рис. 4.9. Виды хромосомных перестроек

у другой части «лишняя» хромосома 21 транслоцирована на другую хромосому (такая хромосома приобретает необычно большие размеры и изменяет форму, см. рис. 4.24).

Очевидно, что инверсии и транслокации ведут к изменению локализации соответствующих нуклеотидных последовательностей (генов, сайтов).

Хромосомные аберрации (мутации, перестройки) обычно проявляются в изменении морфологии хромосом, что можно наблюдать с помощью микроскопа (цитогенетический метод генетического анализа). Метацентрические хромосомы становятся субметацентрическими и/или акроцентрическими и, наоборот, возникают кольцевые и полицентрические хромосомы (рис. 4.10, 4.11). Особая категория хромосомных мутаций — аберрации, связанные с центрическим слиянием или разделением хромосом. В таких случаях две негомологичные хромосомы «объединяются» в одну — робертсоновская транслокация, или из одной хромосомы образуются две самостоятельных (рис. 4.12). При мутациях описанного типа появляются хромосомы с новой морфологией, может изменяться число хромосом в кариотипе.

Хромосомные мутации обычно сопровождаются изменениями в генетической программе, наследуемой дочерними клетками после деления материнской. При делециях и дупликациях нарушается количество соответствующих сайтов (генов) в сторону уменьшения или увеличения, тогда как при инверсиях, транспозициях и транслокациях меняют-

Рис. 4.10. Изменение формы хромосом вследствие перицентрических инверсий

Рис. 4.11. Образование кольцевых (I) и полицентрических (II) хромосом

Рис. 4.12. Хромосомные перестройки, связанные с центрическим слиянием или разделением хромосом. Являются причиной изменения числа хромосом в ка-риотипе

ся либо условия и, таким образом, характер функционирования в связи с изменением взаиморасположения нуклеотидных последовательностей (генов, сайтов) в хромосоме, либо состав групп сцепления. Чаще структурные перестройки хромосом соматических клеток сказываются

на их жизнеспособности отрицательно (соматические хромосомные

мутации). Нередко такие перестройки указывают на возможность ма-лигнизации. Серьезные последствия имеют хромосомные аберрации в клетках-предшественницах половых клеток (генеративные хромосомные мутации), что нередко сопровождается нарушением конъюгации гомологичных хромосом и их нерасхождением в дочерние клетки в мейозе. Делеции и дупликации участка одной из гомологичных хромосом сопровождаются при конъюгации образованием гомологом петли с количественно неравноценным наследственным материалом (рис. 4.13). Реципрокные транслокации между двумя негомологичными хромосомами приводят при конъюгации к возникновению не бивалента, а квадривалента с образованием благодаря взаимному притягиванию гомологичных участков, расположенных в разных хромосомах, фигуры креста (рис. 4.14). Участие в реципрокных транслокациях не двух, а большего числа хромосом с возникновением уже не квадривалента, а поливалента приводит к формированию при конъюгации более сложных структур (рис. 4.15). При инверсиях бивалент, возникающий в профазе I мейоза, образует петлю, включающую взаимно инвертированный участок (рис. 4.16).

Конъюгация и последующее расхождение структур, образованных измененными хромосомами, способствуют появлению новых хромосомных перестроек. В результате гаметы, получая неполноценный наследственный материал, не способны обеспечить нормальное развитие особи нового поколения.

Несмотря на неблагоприятные в целом последствия генеративных хромосомных мутаций, в тех случаях, когда они оказываются совместимыми с развитием и жизнью организма, такие мутации через эволюцию

Рис. 4.13. Петля, образующаяся при конъюгации гомологичных хромосом, которые несут неравноценный наследственный материал в соответствующих участках вследствие хромосомной аберрации

Рис. 4.14. Образование при конъюгации квадривалента из двух пар хромосом, несущих ре-ципрокную транслокацию

Рис. 4.15. Образование при конъюгации поливалента шестью парами хромосом, участвующих в реципрокных транслокациях: I — конъюгация между парой хромосом, не несущих транслокацию; II — поливалент, образуемый шестью парами хромосом, участвующих в транслокации

Рис. 4.16. Конъюгация хромосом при инверсиях: I — парацентрическая инверсия в одном из гомологов; II — перицентрическая инверсия в одном из гомологов

структуры хромосом эффективно способствуют биологической эволюции (видообразованию). Даже делеции, если они незначительны по размерам, сохраняются в гетерозиготном состоянии в ряду поколений. Менее вредны, в сравнении с делециями, дупликации, хотя, если увеличение количества наследственного материала значительно (10\% и более), организм, как правило, нежизнеспособен. Робертсоновские транслокации обычно совместимы с жизнью в силу того, что они не связаны с изменениями количества наследственного материала. Это, видимо, было «использовано» в интересах эволюции. О вероятности этого говорят различия числа хромосом в клетках организмов близкородственных видов, объясняемые слиянием или разделением хромосом. Так, у разных видов плодовых мух (дрозофила) количество хромосом в гаплоидных наборах варьирует от 3 до 6. О возможной роли хромосомных перестроек на уровне обезьяноподобного предка в эволюции человека см. п. 4.3.2.

Оцените статью
yamedik
Добавить комментарий