Лучевая диагностика в последние три десятилетия достигла значительных успехов в первую очередь за счет внедрения компьютерной томографии (КТ), ультразвукового исследования (УЗИ) и магнитнорезонансной томографии (МРТ). Однако первичное обследование пациента базируется все же на традиционных методах визуализации: рентгенографии, флюорографии, рентгеноскопии.
Традиционные лучевые методы исследования основаны на использованииХ-лучей,открытыхВильгельмомКонрадомРентгеном в 1895 г. Он не считал возможным извлекать материальную выгоду из результатов научных поисков, так как «…его открытия и изобретения
принадлежат человечеству, и . им не должны ни в коей мере мешать патенты, лицензии, контракты или контроль какой-либо группы людей». Традиционные рентгенологические методы исследования называют проекционными методами визуализации, которые, в свою очередь, можно разделить на три основные группы:
• прямые аналоговые методы;
• непрямые аналоговые методы;
• цифровые методы.
В прямых аналоговых методах изображение формируется непосредственно в воспринимающей излучение среде (рентгеновская пленка, флюоресцирующий экран), реакция которой на излучение не дискретна, а постоянна. Основными аналоговыми методами исследования являются прямая рентгенография и прямая рентгеноскопия.
Прямая рентгенография — базисный метод лучевой диагностики. Он заключается в том, что рентгеновские лучи, прошедшие через тело пациента, создают изображение непосредственно на пленке. Рентгеновская пленка покрыта фотографической эмульсией с кристаллами бромида серебра, которые ионизируются энергией фотонов (чем выше доза излучения, тем больше образуется ионов серебра). Это так называемое скрытое изображение. В процессе проявления металлическое серебро формирует участки потемнения на пленке, а в процессе фиксирования кристаллы бромида серебра вымываются, на пленке появляются прозрачные участки.
Прямая рентгенография позволяет получать статические изображения с наилучшим из всех возможных методов пространственным разрешением. Этот метод используется для получения рентгенограмм органов грудной клетки.
В настоящее время редко прямая рентгенография используется также для получения серии полноформатных изображений при кардиоангиографических исследованиях.
Прямая рентгеноскопия (просвечивание) заключается в том, что прошедшее через тело пациента излучение, попадая на флюоресцирующий экран, создает динамическое проекционное изображение. В настоящее время этот метод практически не используется из-за малой яркости изображения и высокой дозы облучения пациента.
Непрямая рентгеноскопия практически полностью вытеснила просвечивание. Флюоресцирующий экран является частью элек-
тронно-оптического преобразователя, который усиливает яркость изображения более чем в 5000 раз. Рентгенолог получил возможность работать при дневном освещении. Результирующее изображение воспроизводится монитором и может быть записано на кинопленку, видеомагнитофон, магнитный или оптический диск.
Непрямая рентгеноскопия применяется для изучения динамических процессов, таких как сократительная деятельность сердца, кровоток по сосудам
Рентгеноскопия используется также для выявления интракардиальных кальцинатов, обнаружения парадоксальной пульсации ЛЖ сердца, пульсации сосудов, расположенных в корнях легких, и др.
В цифровых методах лучевой диагностики первичная информация (в частности, интенсивность рентгеновского излучения, эхосигнала, магнитные свойства тканей) представлена в виде матрицы (строк и колонок из чисел). Цифровая матрица трансформируется в матрицу пикселов (видимых элементов изображения), где каждому значению числа присваивается тот или иной оттенок серой шкалы.
Общим преимуществом всех цифровых методов лучевой диагностики по сравнению с аналоговыми является возможность обработки и хранения данных с помощью компьютера.
Вариантом цифровой проекционной рентгенографии является дигитальная (цифровая) субтракционная ангиография. Сначала производится нативная цифровая рентгенограмма, затем — цифровая рентгенограмма после внутрисосудистого введения контрастного препарата и далее из второго изображения вычитается первое. В результате получают изображение только сосудистого русла.
Компьютерная томография — метод получения томографических изображений («срезов») в аксиальной плоскости без наложения друг на друга изображений соседних структур. Вращаясь вокруг пациента, рентгеновская трубка испускает тонко коллимированные веерообразные пучки лучей, перпендикулярных длинной оси тела (аксиальная проекция). В исследуемых тканях часть фотонов рентгеновского излучения поглощается или рассеивается, а другая распространяется до специальных высоко чувствительных детекторов, генерируя в последних электрические сигналы, пропорциональные
интенсивности пропущенного излучения. При определении различий в интенсивности излучения КТ-детекторы на два порядка более чувствительны, чем рентгеновская пленка. Работающий по специальной программе компьютер (спецпроцессор) оценивает ослабление первичного луча по различным направлениям и рассчитывает показатели «рентгеновской плотности» для каждого пиксела в плоскости томографического среза.
Уступая полноразмерной рентгенографии в пространственном разрешении, КТ значительно превосходит ее в разрешении по контрастности.
Спиральная (или винтовая) КТ сочетает постоянное вращение рентгеновской трубки с поступательным движением стола с пациентом. В результате исследования компьютер получает (и обрабатывает) информацию о большом массиве тела пациента, а не об одном срезе.
Спиральная КТ дает возможность реконструкции двухмерных изображений в различных плоскостях, позволяет создавать трехмерные виртуальные изображения органов и тканей человека.
КТ является эффективным методом выявления опухолей сердца, обнаружения осложнений ИМ, диагностики заболеваний перикарда. С появлением мультислайсных (многорядных) спиральных компьютерных томографов удается изучать состояние коронарных артерий и шунтов.
Радионуклидная диагностика (радионуклидная визуализация)
основана на обнаружении излучения, которое испускается радиоактивным веществом, находящимся внутри тела пациента. Вводимые пациенту внутривенно (реже ингаляционно), РФП представляют собой молекулу-носитель (определяющую пути и характер распространения препарата в теле пациента), в состав которой входит радионуклид — нестабильный атом, спонтанно распадающийся с выделением энергии. Так как для целей визуализации используются радионуклиды, испускающие гамма-фотоны (высокоэнергетическое электромагнитное излучение), то в качестве детектора применяется гамма-камера (сцинтилляционная камера). Для радионуклидных
исследований сердца используются различные препараты, меченные технецием-99т, и таллий-201. Метод позволяет получить данные о функциональных особенностях камер сердца, перфузии миокарда, существовании и объеме внутрисердечного сброса крови.
Однофотонная эмиссионная компьютерная томография (ОЭКТ) — вариант радионуклидной визуализации, при котором гамма-камера вращается вокруг тела пациента. Определение уровня радиоактивности с различных направлений позволяет реконструировать томографические срезы (подобно рентгеновской КТ). Этот метод в настоящее время широко используется в кардиологических исследованиях.
В позитронной эмиссионной томографии (ПЭТ) используется эффект аннигиляции позитронов и электронов. Позитронэмиттирующие изотопы (15O, 18F) продуцируются с помощью циклотрона. В теле пациента свободный позитрон реагирует с ближайшим электроном, что приводит к образованию двух γ-фотонов, разлетающихся в строго диаметральных направлениях. Для выявления этих фотонов имеются специальные детекторы. Метод позволяет определять концентрацию радионуклидов и меченных ими продуктов жизнедеятельности, в результате чего удается изучить метаболические процессы в различных стадиях заболеваний.
Преимущество радионуклидной визуализации — в возможности изучения физиологических функций, недостаток — низкое пространственное разрешение.
Кардиологические ультразвуковые методики исследования не
несут потенциала лучевых повреждений органов и тканей тела человека и в нашей стране традиционно относятся к функциональной диагностике, что диктует необходимость их описания в отдельной главе.
Магнитно-резонансная томография (МРТ) — метод диагностической визуализации, в котором носителем информации являются радиоволны. Попадая в поле действия сильного однородного магнитного поля, протоны (ядра водорода) тканей тела пациента выстраиваются вдоль линий этого поля и начинают вращаться вокруг длинной оси со строго определенной частотой. Воздействие боковых электромагнитных радиочастотных импульсов, соответствующих этой частоте (резонансная частота), приводит к накоплению энергии
и отклонению протонов. После прекращения импульсов протоны возвращаются в исходное положение, выделяя накопленную энергию в виде радиоволн. Характеристики этих радиоволн зависят от концентрации и взаиморасположения протонов и от взаимоотношений других атомов в исследуемом веществе. Компьютер анализирует информацию, которая поступает от радиоантенн, расположенных вокруг пациента, и строит диагностическое изображение по принципу, аналогичному созданию изображений в других томографических методах.
МРТ — наиболее бурно развивающийся метод оценки морфологических и функциональных особенностей сердца и сосудов, имеет большое разнообразие прикладных методик.
Ангиокардиографический метод применяется для изучения камер сердца и сосудов (в том числе коронарных). Пункционным способом (по методу Сельдингера) под контролем флюороскопии в сосуд (чаще всего бедренную артерию) вводится катетер. В зависимости от объема и характера исследования катетер продвигают в аорту, камеры сердца и выполняют контрастирование — введение определенного количества контрастного вещества для визуализации исследуемых структур. Исследование снимается кинокамерой или записывается видеомагнитофоном в нескольких проекциях. Скорость прохождения и характер наполнения контрастным препаратом сосудов и камер сердца дают возможность определить объемы и параметры функции желудочков и предсердий сердца, состоятельность клапанов, аневризмы, стенозы и окклюзии сосудов. Одновременно можно измерять показатели давления и насыщения крови кислородом (зондирование сердца).
На базе ангиографического метода в настоящее время активно развивается интервенционная радиология — совокупность малоинвазивных методов и методик терапии и хирургии ряда заболеваний человека. Так, баллонная ангиопластика, механическая и аспирационная реканализация, тромбэктомия, тромболизис (фибринолизис) дают возможность восстановить нормальный диаметр сосудов и кровоток по ним. Стентирование (протезирование) сосудов улучшает результаты чрескожной транслюминальной баллонной ангиопластики при рестенозах и отслоениях интимы сосудов, позволяет укрепить их стенки при аневризмах. С помощью баллонных катетеров
большого диаметра осуществляют вальвулопластику — расширение стенозированных клапанов сердца. Ангиографическая эмболизация сосудов позволяет остановить внутренние кровотечения, «выключить» функцию органа (например, селезенки при гиперспленизме). Эмболизация опухоли производится при кровотечениях из ее сосудов и для уменьшения кровоснабжения (перед операцией).
Интервенционная радиология, являясь комплексом малоинвазивных методов и методик, позволяет проводить в щадящем режиме лечение таких заболеваний, которые раньше требовали хирургического вмешательства.
Сегодня уровень развития интервенционной радиологии демонстрирует качество технологического и профессионального развития специалистов лучевой диагностики.
Таким образом, лучевая диагностика — это комплекс разнообразных методов и методик медицинской визуализации, при которых получают и обрабатывают информацию от пропускаемого, испускаемого и отраженного электромагнитного излучения. В кардиологии лучевая диагностика за последние годы претерпела значительные изменения и заняла важнейшее место как в диагностике, так и в лечении заболеваний сердца и сосудов.