ТРАНСКРИПЦИЯ

Мост между геном (кодонами) и белком обеспечивается РНК. Точнее, информация, закодированная в последовательности азотистых оснований ДНК, вначале переносится от ДНК к матричной РНК (мРНК). Этот этап переноса информации носит название транскрипции и происходит у прокариотов в нуклеоиде, а у эукариотов — в ядре.

Транскрипция — первый этап в передаче генетической информации, сущность которого заключается в синтезе мРНК, т. е. в «переписывании» генетической информации в молекулы мРНК. Основными структурами, которые участвуют в транскрипции, являются ДНКматрица (цепь ДНК), РНК-полимераза и хромосомные белки (гистоновые и негистоновые).

Однако наряду с молекулами мРНК с ДНК транскрибируются молекулы РНК и других видов (рибосомная и транспортная), также имеющие важное значение в реализации генетической информации. Все эти РНК называются еще ядерными. Размеры транскрибируемых молекул РНК зависят от посылаемых с цепи ДНК-шаблона сигналов начала и остановки синтеза (кодонов ини- циации и терминации).

Наиболее обильными РНК в клетках всех видов являются молекулы рибосомной РНК (рРНК), которые выполняют роль структурных компонентов рибосом. У эукариот синтез рРНК контролируется

огромным количеством генов (сотни копий) и происходит в ядрышке. В клетках человека гены для рРНК локализованы на 13, 14, 15, 21 и 22-й парах хромосом. Молекулы рРНК являются продуктами процессинга первичных транскриптов (прорРНК). В меньших количествах в клетках обнаруживаются молекулы транспортных РНК (тРНК), которые участвуют в декодировании информации (трасляции).

Молекулы мРНК составляют около 3\% общей клеточной РНК, они очень нестабильны. Период их полужизни необычайно краток у прокариотов, составляя 2-10 мин. У эукариотов время полужизни молекул мРНК составляет несколько часов или даже несколько недель. У прокариотов молекулы мРНК — непосредственные продукты транскрипции. Напротив, у эукариотов они являются продуктами процессинга первичных РНК-транскриптов.

Синтез молекул мРНК происходит в ядре клетки, откуда через ядерную мембрану они проходят в цитоплазму к рибосомам. Он очень сходен с репликацией ДНК. Отличие заключается лишь в том, что в качестве матрицы (шаблона) для копирования цепи мРНК используется лишь одна цепь ДНК. При этом копирование мРНК может начаться с любого пункта одиночной цепи ДНК. Важно подчеркнуть, что какой-либо ген транскрибируется лишь с одной цепи. В то же время два даже соседних гена могут транскрибироваться с разных цепей. Таким образом, для транскрипции может использоваться любая из двух цепей ДНК. Одна из цепей транскрибируется одними РНК-полимеразами, другая — другими РНК-полимеразами. Поскольку обе цепи ДНК имеют противоположную полярность, то транскрипция на каждой из цепей проходит в противоположных направлениях. Цепь, которая содержит те же последовательности, что и мРНК, называют кодирующей, а цепь, обеспечивающую синтез мРНК (на основе комплементарного спаривания), — антикодирующей. Из-за считывания кода с мРНК для его записи используют основания А, Г, У, Ц.

В меньших количествах в клетках обнаруживаются молекулы транспортных РНК (тРНК), которые участвуют в декодировании информации (трансляции).

Молекулы тРНК также являются продуктами процессинга первичных транскриптов (см. ниже). Существенной особенностью тРНК служит свернутый характер их вторичной структуры, которая имеет форму клеверного листа (рис. 50).

Рис. 50. Вторичная структура молекулы фенилаланиновой тРНК

Все РНК транскрибируются с ДНК, которая несет множественные копии соответствующих генов. Механизм синтеза РНК сходен с меха- низмом репликации ДНК. Непосредственными предшественниками в синтезе РНК являются рибонуклеозидтри-фосфаты, причем здесь действует то же правило спаривания оснований, за исключением того, что кодируются лишь ограниченные сегменты цепи ДНК и что тимин в ДНК заменяется на урацил. Урацил спаривается с аденином таким же образом, как и тимин. Цепь РНК растет в направлении от 5′- к 3′-концу с освобождением пирофосфата (рис. 51).

Рис. 51. Транскрипция у эукариотов

Синтез РНК обеспечивается РНК-полимеразами. У прокариот синтез мРНК, рРНК и тРНК осуществляет лишь один тип РНК-полимеразы, количество молекул которой в клетках достигает 3000. Каждая из молекул этой РНК-полимеразы состоит из шести полипептидов, какими

являются субъединицы β и β’ (м. м. 155 000 и 151 000 соответственно), двух субъединиц α м. м. 36 000 и еще двух низкомолекулярных субъединиц δ и ω, инициация транскрипции обеспечивается комплексом полимераза + белки (около 6 белковых комплексов). Связывание РНК-полимеразы с ДНК происходит на участке, называемом промотором. У Е. coli промоторы содержат последовательность ТАТААТ (бокс Прибнау), а контролируются белковым фактором (рис. 52).

Напротив, в клетках эукариот существуют три РНК-полимеразы, представляющие собой сложные молекулы, содержащие от одной до нескольких полипептидных цепей. Каждая из этих РНК-полимераз, прикрепляясь к промотору на ДНК, обеспечивает транскрипцию разных последовательностей ДНК. РНК-полимераза I синтезирует рибосомальную РНК (основные молекулы РНК больших и малых субъединиц рибосом). РНК-полимераза II синтезирует все мРНК и часть малых рРНК, РНК-полимераза III синтезирует тРНК и РНК 5/5″-субъединиц рибосом.

Рис. 52. Выбор промоторов

Эукариотические РНК-полимеразы также характеризуются сложным строением. РНК-полимераза II многих организмов построена из 12 различных полипептидов, три из которых гомологичны субъе- диницам β’, β и α РНК-полимеразы из E. coli, РНК-полимеразы I и III обладают 5 субъединицами, сходными с субъединицами РНКполимеразы II. РНК-полимераза II инициирует транскрипцию, причем для этого требуется белок ДНК-геликаза, детерминируемая у дрожжей геном RA 25, а у человека — геном XRB.

Как отмечено выше, транскрипция у эукариот — более сложный процесс по сравнению с прокариотами. мРНК эукариотов образует-

ся в ядре из первичных генных транскриптов длиной 1000-500 000 пар оснований в результате процессинга (рис. 53). Другими словами, формируемые первичные транскрипты (про-мРНК) не на всем протяжении способны к трансляции. Для того чтобы про-мРНК стала «зрелой» мРНК, которая полностью транслируется, она еще в ядре вовлекается в процессинг, который заключается в том, что из промРНК «вырезают» нетранслируемые участки (интроны), после чего транслируемые участки (эксоны) воссоединяются (сплайсинг — процессинг). В результате образуются непрерывные последовательности, т. е. молекулы «зрелой» мРНК, которые по своим размерам значительно меньше молекул про-мРНК. Биологические механизмы сплайсинга определяются участием в этом процессе малых ядерных рибонуклеопротеиновых частиц, которые концентрируются в интерфазном ядре совместно с рибонуклеопротеидными факторами сплайсинга. Внутриклеточное распределение факторов сплайсинга контролируется одной из киназ. Четыре реакции процессинга РНК катализируются РНК-энзимами (рибозимами).

Помимо модификации ядерной про-мРНК путем «вырезания» и сплайсинга ее сегментов, изредко имеет место так называемое «редактирование» РНК, которое заключается в конверсии одного основания в другое. Например, в клетках печени синтезируемый белок аполидопротеин имеет молекулярную массу порядка 242 000 дальтон. Это результат конверсии в кодирующем гене цитозина в урацил (в клетках кишечника), что ведет к образованию стоп-

Рис. 53. Процессинг РНК

кодона и, следовательно, более короткого белка. Наконец, возможна модификация РНК и путем посттранскрипционного добавления к 3′-концу 30-50 нуклеотидов полиадениловой кислоты на расстоянии 15 нуклеотидов от последовательности ААУААА. По этой причине транскрипция заканчивается вдали от полиА-сигнала, а процессинг удаляет экстрануклеотиды до полиА-добавления.

Синтезированная «зрелая» мРНК является первичным продуктом действия генов и идет затем из ядра в цитоплазму, где служит матрицей для формирования полипептидных цепей на рибосомах. Считают, что в клетках имеется по 2000-3000 молекул мРНК, находящихся на разных уровнях синтеза и распада. В частности, установлены рибозимы с полинуклеотидкиназной активностью, способные катализировать АТФ-зависимое фосфорилирование.

Большинство эукариотических промоторов содержит ТАТАпоследовательность, локализованную на расстоянии 30 оснований от сайта транскрипционного старта. Инициация транскрипции обеспечивается совместным действием полимеразы и 6 дополнительных белков.

Установление интронов поставило вопрос об их происхождении. В объяснении происхождения используют две гипотезы. В соответ- ствии с одной гипотезой интроны были представлены уже в предковых генах, в соответствии с другой — интроны были включены в гены, которые оригинально были непрерывными.

Наряду с описанной транскрипцией у некоторых РНК-овых вирусов известна обратная транскрипция, при которой матрицей для синтеза ДНК является РНК и которая осуществляется ферментом, получившим название обратной транскриптазы (ревертазы).

Здесь информация идет по схеме РНК — ДНК — белок. Как свидетельствуют исследования, обратная транскриптаза найдена как у прокариотов, так и эукариотов. Считают, что ревертаза имеет очень древнее происхождение и существовала еще до разделения организмов на прокариоты и эукариоты.

Оцените статью
yamedik
Добавить комментарий