НЕНАСЛЕДСТВЕННАЯ ИЗМЕНЧИВОСТЬ

Говоря о ненаследственной изменчивости генетического материала, снова рассмотрим пример широкой нормы реакции — изменение окраски кожных покровов под действием ультрафиолетового излучения. «Загар» ведь не передается из поколения в поколение, т.е. не наследуется, хотя в его возникновении участвуют пластичные гены.

Точно так же не наследуются результаты травм, рубцовые изменения тканей и слизистых оболочек при ожоговой болезни, обморожениях, отравлениях и многие другие признаки, вызванные действием исключительно факторов среды. Вместе с тем, следует подчеркнуть: ненаследственные изменения или модификации связаны с наслед-

ственными свойствами данного организма, ибо образуются на фоне конкретного генотипа в конкретных условиях окружающей среды.

Наследственная комбинативная изменчивость

Как сказано в начале главы, кроме механизма случайных встреч гамет при оплодотворении, комбинативная изменчивость включает механизмы кроссинговера в первом делении мейоза и независимого расхождения хромосом к полюсам деления при образовании дочерних клеток в ходе митоза и мейоза (см. главу 9).

Кроссинговер в первом делении мейоза

За счет механизма кроссинговера сцепление генов с хромосомой регулярно нарушается в профазе первого деления мейоза в результате перемешивания между собой (обмена) генов отцовского и материнского происхождения (рис. 24).

В начале XX в. при открытии кроссинговера Т.Х. Морган и его ученики предположили: кроссинговер между двумя генами может происходить не только в одной, но и в двух, трех (соответственно двойной и тройной кроссинговер) и большем количестве точек. Отмечалось подавление кроссинговера в участках, непосредственно примыкающих к точкам обмена; такое подавление назвали интерференцией.

В конечном итоге подсчитали: на один мужской мейоз приходится от 39 до 64 хиазм или рекомбинаций, а на один женский мейоз — до 100 хиазм.

Рис. 24. Схема кроссинговера в первом делении мейоза (по Шевченко В.А. и соавт., 2004):

a — сестринские хроматиды гомологичных хромосом до начала мейоза; б — они же во время пахитены (видна их спирализация); в — они же во время диплотены и диакинеза (стрелки указывают на места кроссинговера-хиазмы, или участки обмена)

В результате сделали вывод: сцепление генов с хромосомами постоянно нарушается в ходе кроссинговера.

Факторы, влияющие на кроссинговер

Кроссинговер — один из регулярных генетических процессов в организме, контролируемый многими генами как непосредственно, так и через физиологическое состояние клеток в ходе мейоза и даже митоза.

К факторам, влияющим на кроссинговер, относятся:

•  гомо- и гетерогаметный пол (речь идет о митотическом кроссинговере у самцов и самок таких эукариот, как дрозофила и тутовый шелкопряд); так, у дрозофилы кроссинговер протекает нормально; у тутового шелкопряда — либо тоже нормально, либо отсутствует; у человека следует обратить внимание на смешанный («третий») пол и конкретно на роль кроссинговера при аномалиях развития пола при мужском и женском гермафродитизме (см. главу 16);

•  структура хроматина; на частоту кроссинговера в разных участках хромосом влияет распределение гетерохроматиновых (прицентромерные и теломерные участки) и эухроматиновых районов; в частности, в прицентромерных и теломерных участках частота кроссинговера снижена, и расстояние между генами, определяемое по частоте кроссинговера, может не соответствовать фактическому;

•  функциональное состояние организма; по мере увеличения возраста меняется степень спирализации хромосом и скорость клеточного деления;

•  генотип; в его составе выделены гены, увеличивающие или уменьшающие частоту кроссинговера; «запиратели» последнего — хромосомные перестройки (инверсии и транслокации), затрудняющие нормальную конъюгацию хромосом в зиготене;

•  экзогенные факторы: воздействие температуры, ионизирующей радиации и концентрированных растворов солей, химические мутагены, лекарства и гормоны, как правило, повышающие частоту кроссинговера.

По частоте мейотического и митотического кроссинговера и СХО порой судят о мутагенном действии лекарств, канцерогенов, антибиотиков и других химических соединений.

Неравный кроссинговер

В редких случаях в ходе кроссинговера наблюдаются разрывы в несимметричных точках сестринских хроматид, и они обменива-

ются между собой неравными участками — это неравный кроссинговер.

Вместе с тем, описаны случаи, когда в ходе митоза наблюдается митотическая конъюгация (неправильное спаривание) гомологичных хромосом и рекомбинация происходит между несестринскими хроматидами. Такое явление получило название генной конверсии.

Значение данного механизма трудно переоценить. Например, в результате неправильного спаривания гомологичных хромосом по фланкирующим повторам может произойти удвоение (дупликация) или утрата (делеция) участка хромосомы, содержащего ген РМР22, что обусловит развитие наследственной аутосомно-доминантной моторно-сенсорной нейропатии Шарко-Мари-Тус.

Неравный кроссинговер — один из механизмов возникновения мутаций. Например, периферический белок миелин кодируется геном РМР22, расположенным в хромосоме 17 и имеющим длину около 1,5 млн н.п. Этот ген фланкируется двумя гомологичными повторами длиной около 30 тыс. н.п. (повторы расположены на флангах гена).

Особенно много мутаций в результате неравного кроссинговера происходит в псевдогенах. Тогда либо фрагмент одного аллеля переносится в другой аллель, либо фрагмент псевдогена — в ген. Например, подобная мутация отмечается при переносе последовательности псевдогена в ген 21-гидроксилазы (CYP21B) при адреногенитальном синдроме или врожденной гиперплазии коры надпочечников (см. главы 14 и 22).

Кроме того, за счет рекомбинаций в ходе неравного кроссинговера могут образовываться множественные аллельные формы генов, кодирующих антигены HLA класса I.

Независимое расхождение гомологических хромосом к полюсам деления при образовании дочерних клеток в ходе митоза и мейоза

Благодаря процессу репликации, предшествующему митозу соматической клетки, общее количество нуклеотидных последовательностей ДНК увеличивается вдвое. Формирование одной пары гомологичных хромосом происходит из двух отцовских и двух материнских хромосом. При распределении этих четырех хромосом в две дочерние клетки каждая из клеток получит одну отцовскую и одну материнскую хромосомы (для каждой пары хромосомного набора), однако какую именно из двух, первую или вторую, неизвестно. Имеет место

случайный характер распределения гомологичных хромосом. Легко подсчитать: за счет различных комбинаций 23 пар хромосом общее количество дочерних клеток составит 223, или более 8 млн (8 χ 106) вариантов комбинаций хромосом и расположенных на них генов. Следовательно, при случайном характере распределения хромосом в дочерние клетки каждая из них будет иметь свой уникальный кариотип и генотип (свой вариант комбинации хромосом и сцепленных с ними генов соответственно). Следует отметить и возможность патологического варианта распределения хромосом в дочерние клетки. Например, попадание в одну из двух дочерних клеток только одной (отцовской или материнской по происхождению) Х-хромосомы приведет к моносомии (синдром Шерешевского-Тернера, кариотип 45, ХО), попадание трех одинаковых аутосом приведет к трисомии (синдромы Дауна, 47,XY,+21; Патау, 47,ХХ,+13 и Эдвадса, 47,ХХ,+18; см. также главу 2).

Как отмечено в главе 5, в одну дочернюю клетку могут одновременно попасть две отцовские или две материнские по происхождению хромосомы — это однородительская изодисомия по конкретной паре хромосом: синдромы Сильвера-Рассела (две материнские хромосомы 7), Беквитта-Видемана (две отцовские хромосомы 11), Ангельмана (две отцовские хромосомы 15), Прадера-Вилли (две материнские хромосомы 15). В целом объем нарушений распределения хромосом достигает 1\% всех хромосомных нарушений у человека. Эти нарушения имеют большое эволюционное значение, ибо создают популяционное разнообразие кариотипов, генотипов и фенотипов человека. Причем каждый патологический вариант является уникальным продуктом эволюции.

В случае мейоза также легко подсчитать: после первого деления общее число возможных типов комбинаций хромосом в дочерних клетках составит 223 или более 8 млн генотипов.

В результате второго мейотического деления образуются 4 дочерние клетки. В каждую из них отойдет по одной либо материнской, либо отцовской хромосоме из всех 23 хромосом.

Чтобы избежать возможных ошибок в наших дальнейших расчетах, примем за правило: в результате второго мейотического деления также образуется 8 млн вариантов мужских гамет и 8 млн вариантов женских гамет. Тогда ответ на вопрос, каков общий объем вариантов комбинаций хромосом и расположенных на них генов при встрече двух гамет, следующий: 246 или 64 χ 1012, т.е. 64 триллиона.

Образование такого (теоретически возможного) количества генотипов при встрече двух гамет наглядно объясняет смысл гетерогенности генотипов.

Значение комбинативной изменчивости

Комбинативная изменчивость важна не только для гетерогенности и уникальности наследственного материала, но и для восстановления (репарации) стабильности молекулы ДНК при повреждении ее обеих нитей. Примером служит образование одноцепочечной бреши ДНК напротив нерепарированного повреждения. Появившаяся брешь не может быть безошибочно исправлена без привлечения к репарации нормальной нити ДНК.

Мутационная изменчивость

Наряду с уникальностью и гетерогенностью генотипов и фенотипов в результате комбинативной изменчивости огромный вклад в вариабельность генома и фенома человека вносит наследственная мутационная изменчивость и обусловленная ею генетическая гетерогенность.

Вариации нуклеотидных последовательностей ДНК чисто условно можно разделить на мутации и генетический полиморфизм (см. главу 2). Вместе с тем, если гетерогенность генотипов — это постоянные (нормальные) характеристики вариабельности генома, то мутационная изменчивость — это, как правило, его патология.

В пользу патологической вариабельности генома свидетельствуют, например, неравный кроссинговер, неправильное расхождение хромосом к полюсам деления при образовании дочерних клеток, наличие генетических компаундов и аллельных серий. Иными словами, наследственная комбинативная и мутационная изменчивость проявляется у человека значительным генотипическим и фенотипическим разнообразием.

Уточним терминологию и рассмотрим общие вопросы теории мутаций.

Оцените статью
yamedik
Добавить комментарий