ОРГАН ЗРЕНИЯ

Глаз (ophthalmos oculus) — орган зрения, представляющий собой периферическую часть зрительного анализатора, в котором рецепторную функцию выполняют нейросенсорные клетки сетчатой оболочки.

12.2.1. Развитие глаза

Глаз развивается из различных эмбриональных зачатков (рис. 12.1). Сетчатка и зрительный нерв формируются из нервной трубки путем образования сначала так называемых глазных пузырьков, сохраняющих связь с эмбриональным мозгом при помощи полых глазных стебельков. Передняя часть глазного пузырька впячивается внутрь его полости, благодаря чему он приобретает форму двустенного глазного бокала. Часть эктодермы, расположенная напротив отверстия глазного бокала, утолщается, инвагинирует и отшнуровывается, давая начало зачатку хрусталика. Эктодерма претерпевает эти изменения под влиянием индукторов дифференцировок, образующихся в глазном пузырьке. Первоначально хрусталик имеет вид полого эпителиального пузырька. Затем клетки эпителия его задней стенки удлиняются и превращаются в так называемые хрусталиковые волокна, заполняющие полость пузырька. В процессе развития внутренняя стенка глазного бокала преобразуется в сетчатку, а наружная — в пигментный слой сетчатки. На 4-й нед эмбриогенеза зачаток сетчатки состоит из однородных малодиффе-ренцированных клеток. На 5-й нед появляется разделение сетчатки на два слоя: наружный (от центра глаза) — ядерный, и внутренний слой, не содержащий ядер. Наружный ядерный слой играет роль матричной зоны, где наблюдаются многочисленные фигуры митоза. В результате последующей дивергентной дифференцировки стволовых (матричных) клеток развиваются клеточные диффероны различных слоев сетчатки. Так, в начале 6-й нед из матричной зоны начинают выселяться нейробласты, образующие внутренний слой. В конце 3-го мес определяется слой крупных ганглиозных нейронов. В последнюю очередь в сетчатке появляется наружный ядерный слой, состоящий из нейросенсорных клеток — палочковых и колбочковых нейронов. Происходит это незадолго до рождения. Помимо нейробластов в матричном слое сетчатки образуются глиобласты — источники развития клеток глии.

Рис. 12.1. Развитие глаза:

а-в — сагиттальные разрезы глаз эмбрионов на различных стадиях развития. 1 — эктодерма; 2 — хрусталиковая плакода — будущий хрусталик; 3 — глазной пузырек; 4 — сосудистая выемка; 5 — наружная стенка глазного бокала — будущий пигментный слой сетчатки; 6 — внутренняя стенка глазного бокала; 7 — стебелек — будущий зрительный нерв; 8 — хрусталиковый пузырек

Высокодифференцированными среди них становятся радиальные глиоциты (мюллеровы волокна), пронизывающие всю толщу сетчатки.

Стебелек глазного бокала пронизывается аксонами, образующимися в сетчатке ганглиозных мультиполярных нейронов. Эти аксоны и формируют зрительный нерв , направляющийся в мозг. Из окружающей глазной бокал мезенхимы формируются сосудистая оболочка и склера. В передней части глаза склера переходит в покрытую многослойным плоским эпителием (эктодермальным) прозрачную роговицу. Изнутри роговица выстлана однослойным эпителием нейроглиального происхождения. Сосуды и мезенхима, проникающие на ранних стадиях развития внутрь глазного бокала, совместно с эмбриональной сетчаткой принимают участие в образовании стекловидного тела и радужки. Мышца радужки, суживающая зрачок, развивается из краевого утолщения наружного и внутреннего листков глазного бокала, а мышца, расширяющая зрачок, — из наружного листка. Таким образом, обе мышцы радужки по своему происхождению являются нейральными.

12.2.2. Строение глаза

Глазное яблоко (bulbus oculi) состоит из трех оболочек. Наружная (фиброзная) оболочка глазного яблока (tunica fibrosa bulbi), к которой прикрепляются наружные мышцы глаза, обеспечивает защитную функцию. В ней различают передний прозрачный отдел — роговицу и задний непрозрачный отдел — склеру. Средняя (сосудистая) оболочка (tunica vasculosa bulbi) играет основную роль в обменных процессах. Она имеет три части: часть радужки, часть цилиарного тела и собственно сосудистую — хороидею (choroidea).

Внутренняя оболочка глаза сетчатка (tunica interna bulbi, retina) — сенсорная, рецепторная часть зрительного анализатора, в которой происходят

Рис. 12.2. Строение переднего отдела глазного яблока (схема):

1 — роговица; 2 — передняя камера глаза; 3 — радужка; 4 — задняя камера глаза; 5 — хрусталик; 6 — ресничный поясок (циннова связка); 7 — стекловидное тело; 8 — гребенчатая связка; 9 — венозный синус склеры; 10 — ресничное (цилиарное) тело: а — отростки ресничного тела; б — ресничная мышца; 11 — склера; 12 — сосудистая оболочка; 13 — зубчатая линия; 14 — сетчатка

под воздействием света фотохимические превращения зрительных пигментов, фототрансдукция, изменение биоэлектрической активности нейронов и передача информации о внешнем мире в подкорковые и корковые зрительные центры.

Оболочки глаза и их производные формируют три функциональных аппарата: светопреломляющий, или диоптрический (роговица, жидкость передней и задней камер глаза, хрусталик и стекловидное тело); аккомодационный (радужка, ресничное тело с ресничными отростками); рецепторный аппарат (сетчатка).

Наружная фиброзная оболочка — склера (sclera), образована плотной оформленной волокнистой соединительной тканью, содержащей пучки коллагеновых волокон, между которыми находятся уплощенной формы фибробласты и отдельные эластические волокна (рис. 12.2). Пучки кол-лагеновых волокон, истончаясь, переходят в собственное вещество роговицы.

Толщина склеры в заднем отделе вокруг зрительного нерва наибольшая — 1,2- 1,5 мм, кпереди склера истончается до 0,6 мм у экватора и до 0,3-0,4 мм позади места прикрепления прямых мышц. В области диска зрительного нерва большая часть (2/3) истонченной фиброзной оболочки сливается с оболочкой зрительного нерва, а истонченные внутренние слои образуют решетчатую пластинку (lamina cribrosa). При повышении внутриглазного давления фиброзная оболочка истончается, что является причиной некоторых патологических изменений.

Светопреломляющий аппарат глаза

Светопреломляющий (диоптрический) аппарат глаза включает роговицу, хрусталик, стекловидное тело, жидкость (водянистую влагу) передней и задней камер глаза.

Роговица (cornea) занимает 1/16 площади фиброзной оболочки глаза и, выполняя защитную функцию, отличается высокой оптической гомогенностью, пропускает и преломляет световые лучи и является составной частью светопреломляющего аппарата глаза.

Рис. 12.3. Роговица глаза: 1 — многослойный плоский неорогове-вающий эпителий; 2 — передняя пограничная пластинка; 3 — собственное вещество; 4 — задняя пограничная пластинка; 5 — задний эпителий роговицы

Толщина роговицы 0,8-0,9 мкм в центре и 1,1 мкм на периферии, радиус кривизны 7,8 мкм, показатель преломления — 1,37, сила преломления 40 диоптрий.

В роговице микроскопически выделяют пять слоев: 1) передний многослойный плоский неорого-вевающий эпителий; 2) переднюю пограничную пластинку (боумено-ву мембрану); 3) собственное вещество; 4) заднюю пограничную пластинку (десцеметову мембрану); 5) задний эпителий (эндотелий передней камеры) (рис. 12.3).

Клетки переднего эпителия роговицы (кератоциты) плотно прилегают друг к другу, располагаются в пять слоев, соединены десмосомами (см. рис. 12.3). Базальный слой расположен на передней пограничной пластинке. В патологических условиях (при недостаточно прочной связи базального слоя и передней пограничной пластинки) происходит отслойка базального слоя от пограничной пластинки. Клетки базаль-ного слоя эпителия (камбиальные) имеют призматическую форму и овальное ядро, расположенное близко к вершине клетки. К базально-му слою примыкают 2-3 слоя многогранных клеток. Их вытянутые в стороны отростки внедряются между соседними клетками эпителия, подобно крыльям (крылатые, или шиповатые, клетки). Ядра кры-

латых клеток округлые. Два поверхностных эпителиальных слоя состоят из резко уплощенных клеток и не имеют признаков ороговения. Удлиненные узкие ядра клеток наружных слоев эпителия располагаются параллельно поверхности роговицы. В эпителии имеются многочисленные свободные нервные окончания, обусловливающие высокую тактильную чувствительность роговицы. Поверхность роговицы увлажнена секретом слезных и конъюнктивальных желез, который защищает глаз от вредных физико-химических воздействий внешнего мира, бактерий. Эпителий роговицы отличается высокой регенерационной способностью. Под эпителием роговицы расположена бесструктурная передняя пограничная пластинка (lamina limitans anterior) боуменова мембрана — толщиной 6-9 мкм. Это гомогенный слой беспорядочно расположенных коллагеновых фибрилл — продукт жизнедеятельности эпителиоцитов. Граница между боуменовой мембраной и эпителием хорошо выражена, слияние боуменовой мембраны со стромой происходит незаметно.

Собственное вещество роговицы (substantia propria cornea) строма — состоит из гомогенных тонких соединительнотканных пластинок, взаимопересе-кающихся под углом, но правильно чередующихся и расположенных параллельно поверхности роговицы. В пластинках и между ними располагаются отростчатые плоские клетки, являющиеся разновидностями фибробластов. Пластинки состоят из параллельно расположенных пучков коллагеновых фибрилл диаметром 0,3-0,6 мкм (по 1000 в каждой пластинке). Клетки и фибриллы погружены в основное вещество, богатое гликозаминогликана-ми (в основном кератинсульфатами), которое обеспечивает прозрачность собственного вещества роговицы. Оптимальная концентрация воды в стро-ме (75-80 \%) поддерживается механизмом транспорта ионов натрия через задний эпителий. Переход прозрачной роговицы в непрозрачную склеру происходит в области лимба роговицы (limbus corneae). Собственное вещество роговицы не имеет кровеносных сосудов.

Задняя пограничная пластинка (lamina limitans posterior) десцеметова мембрана — толщиной 5-10 мкм, представлена коллагеновыми волокнами диаметром 10 нм, погруженными в аморфное вещество. Это стекловидная, сильно преломляющая свет структура. Она состоит из двух слоев: наружного — эластического, внутреннего — кутикулярного и является производным клеток заднего эпителия. Характерными особенностями задней пограничной пластинки являются прочность, резистентность к химическим агентам и расплавляющему действию гнойного экссудата при язвах роговицы.

При гибели передних слоев десцеметова мембрана выпячивается в виде прозрачного пузырька (десцеметоцеле). На периферии она утолщается, и у людей пожилого возраста на этом месте могут формироваться округлые бородавчатые образования — тельца Гассаля-Генле.

У лимба десцеметова мембрана, истончаясь и разволокняясь, переходит в трабекулярный аппарат склеры (см. ниже).

Задний эпителий (epithelium posterius), или эндотелий передней камеры, состоит из одного слоя гексагональных клеток. Ядра клеток круглые или слегка овальные, их ось располагается параллельно поверхности роговицы. Клетки нередко содержат вакуоли. На периферии роговицы задний эпителий переходит непосредственно на волокна трабекулярной сети, образуя наружный покров каждого трабекулярного волокна, вытягиваясь в длину. Задний эпителий защищает роговицу от воздействия влаги передней камеры.

Процессы обмена в роговице обеспечиваются диффузией питательных веществ из передней камеры глаза за счет краевой петлистой сети роговицы, многочисленными концевыми капиллярными ветвями, образующими густое перилимбальное сплетение.

Лимфатическая система роговицы формируется из узких лимфатических щелей, сообщающихся с ресничным венозным сплетением.

Роговица отличается высокой чувствительностью, что объясняется наличием в ней нервных окончаний. Длинные цилиарные нервы, представляя ветви назоцили-арного нерва, отходящего от первой ветви тройничного нерва, на периферии роговицы проникают в ее толщу, теряют миелин на некотором расстоянии от лимба, делясь дихотомически. Нервные ветви образуют следующие сплетения: в собственном веществе роговицы, претерминальное и под передней пограничной пластинкой — терминальное, суббазальное (сплетение Райзера).

При воспалительных процессах кровеносные капилляры и клетки (лейкоциты, макрофаги и др.) проникают из области лимба в собственное вещество роговицы, что приводит к ее помутнению и ороговению, образованию бельма.

Передняя камера образована роговицей (наружная стенка) и радужкой (задняя стенка), в области зрачка — передней капсулой хрусталика. На крайней ее периферии в углу передней камеры имеется радужно-роговичный (камерный) угол (spatia anguli iridocornealis) с небольшим участком ресничного (цилиарного) тела. Камерный (так называемый фильтрационный) угол граничит с дренажным аппаратом — шлеммовым каналом. Состояние камерного угла играет большую роль в обмене водянистой влаги и в изменении внутриглазного давления. Соответственно вершине угла в склере проходит кольцевидно располагающийся желобок (sulcus sclerae internus). Задний край желобка несколько утолщен и образует склеральный валик, сформированный за счет круговых волокон склеры (заднее пограничное кольцо Швальбе). Склеральный валик служит местом прикрепления поддерживающей связки цилиарного тела и радужки — трабекулярного аппарата, заполняющего переднюю часть склерального желобка. В задней части он прикрывает шлеммов канал.

Трабекулярный аппарат, ранее ошибочно называвшийся гребенчатой связкой, состоит из двух частей: склерокорнеальной (lig. sclerocorneale), занимающей большую часть трабекулярного аппарата, и второй, более нежной, — увеаль-ной части, которая расположена с внутренней стороны и является собственно гребенчатой связкой (lig. pectinatum). Склерокорнеальный отдел трабекуляр-ного аппарата прикрепляется к склеральной шпоре, частично сливается с цилиарной мышцей (мышца Брюкке). Склерокорнеальная часть трабеку-лярного аппарата состоит из сети трабекул, имеющих сложную структуру.

В центре каждой трабекулы, представляющей плоский тонкий тяж, проходит коллагеновое волокно, обвитое, укрепленное эластическими волокнами и покрытое снаружи футляром из гомогенной стекловидной оболочки, являющейся продолжением задней пограничной пластинки. Между сложным переплетом корнеосклеральных волокон остаются многочисленные свободные щелевидные отверстия — фонтановы пространства, выстланные эндотелием передней камеры, переходящим с задней поверхности роговицы. Фонтановы пространства направлены к стенке венозного синуса склеры (sinus venosus sclerae) шлеммова канала, расположенного в нижнем отделе склерального желобка шириной 0,25 см. В некоторых местах он разделяется на ряд канальцев, далее сливающихся в один ствол. Внутри шлеммов канал выстлан эндотелием. С его наружной стороны отходят широкие, иногда варикозно-расширенные сосуды, образующие сложную сеть анастомозов, от которых берут начало вены, отводящие водянистую влагу из передней и задней камер в глубокое склеральное венозное сплетение.

Хрусталик (lens). Это прозрачное двояковыпуклое тело, форма которого меняется во время аккомодации глаза к видению близких и отдаленных объектов. Вместе с роговицей и стекловидным телом хрусталик составляет основную светопреломляющую среду. Радиус кривизны хрусталика варьирует от 6 до 10 мм, показатель преломления составляет 1,42. Хрусталик покрыт прозрачной капсулой толщиной 11-18 мкм. Это базальная мембрана эпителия, которая содержит коллаген, сульфатированный гликозоами-ногликан и др. Передняя стенка хрусталика состоит из однослойного плоского эпителия (epithelium lentis). По направлению к экватору эпителиоциты становятся выше и образуют ростковую зону хрусталика. Эта зона является камбиальной для клеток передней и задней поверхности хрусталика. Новые эпителиоциты преобразуются в хрусталиковые волокна (fibrae lentis). Каждое волокно представляет собой прозрачную шестиугольную призму. В цитоплазме хрусталиковых волокон находится прозрачный белок — кристаллин. Волокна склеиваются друг с другом особым веществом, которое имеет такой же, как и они, коэффициент преломления. Центрально расположенные волокна теряют свои ядра, укорачиваются и, накладываясь друг на друга, образуют ядро хрусталика.

Хрусталик поддерживается в глазу с помощью волокон ресничного пояска (zonula ciliaris), образованного радиально расположенными пучками нерастяжимых волокон, прикрепленных с одной стороны к ресничному (цили-арному) телу, а с другой — к капсуле хрусталика, благодаря чему сокращение мышц ресничного тела передается хрусталику. Знание закономерностей строения и гистофизиологии хрусталика позволило разработать методы создания искусственных хрусталиков и широко внедрить в клиническую практику их пересадку, что сделало возможным лечение больных с помутнением хрусталика (катаракта).

Стекловидное тело (corpus vitreum). Это прозрачная масса желеобразного вещества, заполняющего полость между хрусталиком и сетчаткой, в составе которого 99 \% воды. На фиксированных препаратах стекловидное тело имеет сетчатое строение. На периферии оно более плотное, чем в центре.

Через стекловидное тело проходит канал — остаток эмбриональной сосудистой системы глаза — от сосочка сетчатки до задней поверхности хрусталика. Стекловидное тело содержит белок витреин и гиалуроновую кислоту, из клеток в нем обнаружены гиалоциты, макрофаги и лимфоциты. Показатель преломления стекловидного тела равен 1,33.

Аккомодационный аппарат глаза

Аккомодационный аппарат глаза (радужка, ресничное тело с ресничным пояском) обеспечивает изменение формы и преломляющей силы хрусталика, фокусировку изображения на сетчатке, а также приспособление глаза к интенсивности освещения.

Радужка (iris). Представляет собой дисковидное образование с отверстием изменчивой величины (зрачок) в центре. Она является производным сосудистой (в основном) и сетчатой оболочек. Сзади радужка покрыта пигментным эпителием сетчатой оболочки. Расположена между роговицей и хрусталиком на границе между передней и задней камерами глаза (рис. 12.4). Край радужки, соединяющий ее с ресничным телом, называется ресничным (цилиар-ным) краем. Строма радужки состоит из рыхлой волокнистой соединительной ткани, богатой пигментными клетками. Здесь располагаются мионейральные клетки. Радужка осуществляет свою функцию в качестве диафрагмы глаза с помощью двух мышц: суживающей (musculus sphincter pupillae) и расширяющей (musculus dilatator pupillae) зрачок.

В радужке различают пять слоев: передний (наружный) эпителий, покрывающий переднюю поверхность радужки, передний пограничный (наружный бессосудистый) слой, сосудистый слой, задний (внутренний) пограничный слой и задний (пигментный) эпителий.

Передний эпителий (epithelium anterius iridis) представлен нейроглиальными плоскими полигональными клетками. Он является продолжением эпителия, покрывающего заднюю поверхность роговицы.

Передний пограничный слой (stratum limitans anterius) состоит из основного вещества, в котором располагаются значительное количество фибробластов и пигментных клеток. Различное положение и количество меланинсодержащих клеток обусловливают цвет глаз. У альбиносов пигмент отсутствует и радужка имеет красный цвет в связи с тем, что через ее толщу просвечивают кровеносные сосуды. В пожилом возрасте наблюдается депигментация радужки, и она делается более светлой.

Сосудистый слой (stratum vasculosum) состоит из многочисленных сосудов, пространство между которыми заполнено рыхлой волокнистой соединительной тканью с пигментными клетками.

Задний пограничный слой (stratum limitans posterius) не отличается по строению от переднего слоя.

Задний пигментный эпителий (epithelium posterius pigmentosum) является продолжением двухслойного эпителия сетчатки, покрывающего ресничное тело и отростки. Он включает диффероны видоизмененных глиоцитов и пигментоцитов.

Ресничное, или цилиарное, тело (corpus ciliare). Ресничное тело является производным сосудистой и сетчатой оболочек. Выполняет функцию фиксации хрусталика и изменения его кривизны, тем самым участвуя в акте

Рис. 12.4. Радужка:

1 — однослойный плоский эпителий; 2 — передний пограничный слой; 3 — сосудистый слой; 4 — задний пограничный слой; 5 — задний пигментный эпителий

аккомодации. На меридиональных срезах через глаз цилиарное тело имеет вид треугольника, который своим основанием обращен в переднюю камеру глаза. Ресничное тело подразделяется на две части: внутреннюю — ресничный венец (corona ciliaris) и наружную — ресничное кольцо (orbiculus ciliaris). От поверхности ресничного венца отходят по направлению к хрусталику ресничные отростки (processus ciliares), к которым прикрепляются волокна ресничного пояска (см. рис. 12.2). Основная часть ресничного тела, за исключением отростков, образована ресничной, или цилиарной, мышцей (m. cilia-ris), играющей важную роль в аккомодации глаза. Она состоит из пучков гладких мышечных клеток нейроглиальной природы, располагающихся в трех различных направлениях.

Различают наружные меридиональные мышечные пучки, лежащие непосредственно под склерой, средние радиальные и циркулярные мышечные пучки, образующие кольцевой мышечный слой. Между мышечными пучками расположена рыхлая волокнистая соединительная ткань с пигментными клетками. Сокращение цилиарной мышцы приводит к расслаблению волокон круговой связки — ресничного пояска хрусталика, вследствие чего хрусталик становится выпуклым и его преломляющая сила увеличивается.

Ресничное тело и ресничные отростки покрыты глиальным эпителием. Последний представлен двумя слоями: внутренний — непигментированные цилиндрические клетки — аналог мюллеровых волокон, наружный — продолжением пигментного слоя сетчатки. Эпителиальные клетки, покрывающие ресничное тело и отростки, принимают участие в образовании водянистой влаги, заполняющей обе камеры глаза.

Сосудистая оболочка (choroidea) осуществляет питание пигментного эпителия и нейронов, регулирует давление и температуру глазного яблока. В ней различают надсосудистую, сосудистую, сосудисто-капиллярную пластинки и базальный комплекс.

Рис. 12.5. Сетчатка:

а — схема нейронного состава сетчатки: 1 — палочки; 2 — колбочки; 3 — наружный пограничный слой; 4 — центральные отростки нейросенсорных клеток (аксоны);

5 — синапсы аксонов нейросенсорных клеток с дендритами биполярных нейронов;

6 — горизонтальный нейрон; 7 — амакринный нейрон; 8 — ганглиозные нейроны; 9 — радиальный глиоцит; 10 — внутренний пограничный слой; 11 — волокна зрительного нерва; 12 — центрифугальный нейрон

Надсосудистая пластинка (lamina suprachoroidea) толщиной 30 мкм представляет самый наружный слой сосудистой оболочки, прилежащий к склере. Она образована рыхлой волокнистой соединительной тканью, содержит большое количество пигментных клеток (меланоцитов), коллагеновых фибрилл, фибробластов, нервных сплетений и сосудов. Тонкие (диаметром 2-3 мкм) коллагеновые волокна этой ткани направлены от склеры к хороидее, параллельно склере, имеют косое направление в передней части, переходят в ресничную мышцу.

Сосудистая пластинка (lamina vasculosa) состоит из переплетающихся артерий и вен, между которыми располагаются рыхлая волокнистая соединительная ткань, пигментные клетки, отдельные пучки гладких миоцитов. Сосуды хороидеи являются ветвями задних коротких цилиарных артерий (орбитальные ветви глазной

Рис. 12.5. Продолжение

б — микрофотография: I — пигментный эпителий сетчатки; II — палочки и колбочки нейросенсорных клеток; III — наружный ядерный слой; IV — наружный сетчатый слой; V — внутренний ядерный слой; VI — внутренний сетчатый слой; VII — слой ганглиозных нейронов; VIII — слой нервных волокон

артерии), которые проникают на уровне диска зрительного нерва в глазное яблоко, а также ветвями длинных цилиарных артерий.

Сосудисто-капиллярная пластинка (lamina choroicapillaris) содержит гемокапил-ляры висцерального или синусоидного типа, отличающиеся неравномерным калибром. Между капиллярами располагаются уплощенные фибробласты.

Базальный комплекс (complexus basalis) мембрана Бруха (lamina vitrea, lamina elastica, membrana Brucha) — очень тонкая пластинка (1-4 мкм), располагающаяся между сосудистой оболочкой и пигментным слоем (эпителием) сетчатки. В ней различают наружный коллагеновый слой с зоной тонких эластических волокон, являющихся продолжением волокон сосудисто-капиллярной пластинки; внутренний коллагеновый слой, волокнистый (фиброзный), более толстый слой; третий слой представлен базальной мембраной пигментного эпителия. Через базальный комплекс в сетчатку поступают вещества, необходимые для нейросенсорных клеток.

Рецепторный аппарат глаза

Рецепторный аппарат глаза представлен зрительной частью сетчатой оболочки (сетчатки).

Внутренняя чувствительная оболочка глазного яблока, сетчатка (tunica interna sensoria bulbi, retina) состоит из наружного пигментного слоя (stratum pigmentosum) и внутреннего слоя нейросенсорных клеток (stratum nervosum) (рис. 12.5, а, б). Функционально выделяют заднюю большую зрительную часть сетчатки (pars

Рис. 12.5. Продолжение

в — синаптические связи в сетчатке (схема по Е. Бойкоту, Дж. Даулингу): 1 — пигментный слой; 2 — палочки; 3 — колбочки; 4 — зона расположения наружного пограничного слоя; 5 — горизонтальные нейроны; 6 — биполярные нейроны; 7 — ама-кринные нейроны; 8 — радиальные глиоциты; 9 — ганглиозные нейроны; 10 — зона расположения внутреннего пограничного слоя; 11 — синапсы между нейросенсор-ными клетками, биполярными и горизонтальными нейронами в наружном сетчатом слое; 12 — синапсы между биполярными, амакринными и ганглиозными нейронами во внутреннем сетчатом слое

optica retinae), меньшие части — ресничную, покрывающую ресничное тело (pars ciliares retinae), и радужковую, покрывающую заднюю поверхность радужки (pars iridica retina). В заднем полюсе глаза находится желтоватого цвета пятно (macula lutea) с небольшим углублением — центральной ямкой (fovea centralis).

Свет входит в глаз через роговицу, водянистую влагу передней камеры, хрусталик, жидкость задней камеры, стекловидное тело и, пройдя через толщу всех слоев сетчатки, попадает на отростки нейросенсорных клеток, в

наружных сегментах которых начинаются физиологические процессы возбуждения, фототрансдукции. Таким образом, сетчатка глаза человека относится к типу так называемых инвертированных органов, т. е. таких, в которых фоторецепторы направлены от света и образуют самые глубокие слои сетчатки, обращенные к слою пигментного эпителия.

Сетчатка состоит из трех типов радиально расположенных нейронов и двух слоев синапсов. Первый тип нейронов, расположенных наружно, — это палочковые и колбочко-вые нейроны, второй тип — биполярные нейроны, осуществляющие контакты между первым и третьим типом, третий тип — ганглиозные нейроны. Кроме того, имеются нейроны, осуществляющие горизонтальные связи, — горизонтальные и амакринные.

Наружный ядерный слой содержит тела палочковых и колбочковых нейронов, внутренний ядерный слой — тела биполярных, горизонтальных и ама-кринных нейронов, а слой ганглиоз-ных клеток — тела ганглиозных и перемещенных амакринных нейронов (см. рис. 12.5).

В наружном сетчатом слое контакты между колбочковыми нейронами и палочковыми нейронами осуществляются с вертикально ориентированными биполярными и горизонтально ориентированными горизонтальными нейронами. Во внутреннем сетчатом слое осуществляется переключение информации с вертикально ориентированных биполярных нейронов на ганглиоз-ные клетки, а также на различные виды вертикально и горизонтально направленные амакринные нейроны. В этом слое происходят кульми-

Рис. 12.5. Продолжение г, д — ультрамикроскопическое строение палочковой и колбочковой нейросенсорных клеток (схема по Ю. И. Афанасьеву):

I — наружный сегмент; II — связующий отдел; III — внутренний сегмент; IV — перикарион; V — аксон. 1 — диски (в палочках) и полудиски (в колбочках);

2 — плазмолемма; 3 — базальные тельца ресничек; 4 — липидное тело; 5 — митохондрии; 6 — эндоплазматическая сеть; 7 — ядро; 8 — синапс

нация всех интегральных процессов, связанных со зрительным образом, и передача информации через зрительный нерв в мозг. Через все слои сетчатки проходят радиальные глиальные клетки (клетки Мюллера).

В сетчатке выделяют также наружный пограничный слой, который состоит из множества описанных выше синаптических комплексов, расположенных между клетками Мюллера и нейросенсорными клетками; слой нервных волокон, который состоит из аксонов ганглиозных клеток. Последние, достигнув внутренней части сетчатки, поворачивают под прямым углом и затем идут параллельно внутренней поверхности сетчатки к месту выхода зрительного нерва. Они не содержат миелина и не имеют шванновских оболочек, что обеспечивает их прозрачность. Внутренний пограничный слой представлен окончаниями отростков клеток Мюллера и их базальными мембранами.

Нейросенсорные клетки делятся на два типа: палочковые и колбочковые (см. рис. 12.5). Палочковые нейроны являются рецепторами сумеречного (ночного зрения), колбочковые нейроны — рецепторами дневного зрения. Морфологически нейросенсорные клетки представляют собой длинные цилиндрической формы клетки, которые имеют несколько отделов. Дистальная часть рецепторов — это видоизмененная ресничка. Наружный сегмент (палочка или колбочка) — содержит фоторецепторные мембраны, где и происходит поглощение света и начинается зрительное возбуждение. Наружный сегмент связан с внутренним сегментом соединительной ножкой — ресничкой (цилией). Во внутреннем сегменте находятся множество митохондрий и полирибосом, цистерны комплекса Гольджи и небольшое количество элементов гранулярной и гладкой эндоплазматической сети. В этом сегменте происходит синтез белка. Далее сужающаяся часть клетки заполнена микротрубочками (миоид), затем идет расширенная часть с ядром. Тело клетки, расположенное проксимальнее внутреннего сегмента, переходит в аксональный отросток, который формирует синапс с дендри-тами биполярных и горизонтальных нейронов. Однако палочковые клетки отличаются от колбочковых клеток (см. рис. 12.5, г, д). У палочковых нейронов наружный сегмент цилиндрической формы, а диаметр внутреннего сегмента равен диаметру наружного. Наружные сегменты колбочковых клеток обычно конические, а внутренний сегмент по диаметру значительно превосходит наружный.

Наружный сегмент представляет собой стопку плоских мембранных мешочков — дисков, число которых доходит до 1000. В процессе эмбрионального развития диски палочек и колбочек образуются как складки — впячи-вания плазматической мембраны реснички.

В палочках новообразование складок продолжается у основания наружного сегмента в течение всей жизни. Вновь появившиеся складки оттесняют старые в дистальном направлении. При этом диски отрываются от плазмо-леммы и превращаются в замкнутые структуры, полностью отделенные от плазмолеммы наружного сегмента. Отработанные диски фагоцитируются клетками пигментного эпителия. Дистальные диски колбочек так же, как у палочек, фагоцитируются пигментными клетками.

Таким образом, фоторецепторный диск в наружном сегменте палочковых нейронов полностью отделен от плазматической мембраны. Он образован двумя фоторецепторными мембранами, соединенными по краям и внутри диска, на всем его протяжении имеется узкая щель. У края диска щель расширяется, образуется петля, внутренний диаметр которой составляет несколько десятков нанометров. Параметры диска: толщина — 15 нм, ширина внутридискового пространства — 1 нм, расстояние между дисками — междискового цитоплазматического пространства — 15 нм.

У колбочек в наружном сегменте диски не замкнуты и внутридисковое пространство сообщается с внеклеточной средой (см. рис. 12.5, д). У них более крупное округлое и светлое ядро, чем у палочек. Во внутреннем сегменте колбочек имеется участок, называемый эллипсоидом, состоящий из липидной капли и скопления плотно прилегающих друг к другу митохондрий. От ядросодержащей части нейросенсорных клеток отходят центральные отростки — аксоны, которые образуют синапсы с дендритами биполярных и горизонтальных нейронов, а также с карликовыми и плоскими биполярными нейронами. Длина колбочек в центре желтого пятна около 75 мкм, толщина — 1-1,5 мкм.

Толщина фоторецепторной мембраны наружного сегмента палочковых нейронов составляет около 7 нм. Основным белком фоторецепторной мембраны (до 95-98 \% интегральных белков) является зрительный пигмент родопсин, который обеспечивает поглощение света и запускает фоторецеп-торный процесс.

Зрительный пигмент представляет собой хромогликопротеид. Эта сложная молекула содержит одну хромофорную группу, две олигосахаридные цепочки и водонерастворимый мембранный белок опсин. Хромофорной группой зрительных пигментов служит ретиналь-1 (альдегид витамина А) или ретиналь-2 (альдегид витамина А2). Все зрительные пигменты, содержащие ретиналь-1, относятся к родопсинам, а содержащие ретиналь-2 — к порфиропсинам. Светочувствительная молекула зрительного пигмента при поглощении одного кванта света претерпевает ряд последовательных превращений, в результате которых обесцвечивается. Фотолиз родопсина запускает каскад реакций, в результате происходит гиперполяризация нейрона и уменьшение выделения медиатора.

Среди колбочковых нейронов выделяют три типа, различающиеся зрительными пигментами с максимальной чувствительностью в длинноволновой (558 нм), средневолновой (531 нм) и коротковолновой (420 нм) части спектра. Один из пигментов — йодопсин — чувствителен к длинноволновой части спектра. Пигмент, чувствительный к коротковолновой части спектра, более сходен с родопсином. У человека гены, кодирующие пигмент коротковолновой части спектра и родопсина, находятся на длинном плече 3-й и 7-й хромосом и имеют сходство по структуре. Различные видимые нами цвета зависят от соотношения трех видов стимулируемых колбочковых нейронов.

Отсутствие длинно- и средневолновых колбочковых нейронов обусловлено соответствующими изменениями гена на Х-хромосоме, которые определяют два

типа дихромазии: протанопию и дейтеранопию. Протанопия — нарушение цветоощущения на красный цвет (ранее ошибочно называлось дальтонизмом). У Джона Дальтона благодаря последним достижениям молекулярной генетики выявлена дей-теранопия (нарушение цветоощущения на зеленый цвет).

Горизонтальные нервные клетки (neuron horisontalis) располагаются в один или два ряда. Они отдают множество дендритов, которые контактируют с аксонами нейросенсорных клеток. Аксоны горизонтальных нейронов, имеющие горизонтальную ориентацию, могут тянуться на довольно значительном расстоянии и вступать в контакт с аксонами как палочковых, так и колбоч-ковых нейронов. Передача возбуждения с горизонтальных клеток на синапсы нейросенсорной клетки и биполярного нейрона вызывает временную блокаду в передаче импульсов от фоторецепторов (эффект латерального торможения), что увеличивает контраст в зрительном восприятии.

Биполярные нервные клетки (neuron bipolaris) соединяют палочковые и кол-бочковые нейроны с ганглиозными нейронами сетчатки. В центральной части сетчатки несколько палочковых нейронов соединяются с одним биполярным нейроном, а колбочковые нейроны контактируют в соотношении 1:1 или 1:2. Такое сочетание обеспечивает более высокую остроту цветового видения по сравнению с черно-белым. Биполярные нейроны имеют радиальную ориентацию. Различают несколько видов биполярных нейронов по строению, содержанию синаптических пузырьков и связям с фоторецепторами (например, биполярные нейроны палочки, биполярные нейроны колбочки). Биполярные клетки играют существенную роль в концентрации импульсов, получаемых от нейросенсорных клеток и затем передаваемых ганглиозным нейронам.

Взаимоотношения биполярных нейронов с палочковыми и колбочко-выми нейронами различаются. Например, несколько палочковых клеток (15-20) в наружном сетчатом слое образуют синаптические связи с одним биполярным нейроном. Аксон последнего в составе внутреннего сетчатого слоя взаимодействует с различными типами амакринных нейронов, которые, в свою очередь, формируют синапсы с ганглиозным нейроном. Физиологический эффект заключается в ослаблении или усилении сигнала палочкового нейрона, что обусловливает чувствительность зрительной системы к единичному кванту света.

Амакринные клетки относятся к интернейронам, которые осуществляют связь на втором синаптическом уровне вертикального пути: нейросенсорная клетка → биполярный нейрон → ганглиозный нейрон. Их синаптическая активность во внутреннем сетчатом слое проявляется в интеграции, модуляции, включении сигналов, идущих к ганглиозным нейронам.

Эти клетки, как правило, не имеют аксонов, однако некоторые ама-кринные клетки содержат длинные аксоноподобные отростки. Синапсы амакринных клеток бывают химическими и электрическими. Например, дистальные дендриты амакринной клетки А образуют синапсы с аксонами палочковых биполярных нейронов, а проксимальные дендриты — с ган-глиозными нейронами. Более крупные дендриты А формируют электриче-

ские синапсы с аксонами колбочковых биполярных нейронов. В передаче нервного импульса от палочковых нейронов большую роль играют дофа-минергические и ГАМКергические амакринные клетки. Они ремодели-руют нервные импульсы и осуществляют обратную связь с палочковыми нейронами.

Ганглиозные нейроны — наиболее крупные клетки сетчатки, имеющие большой диаметр аксонов, способных проводить электрические сигналы. В их цитоплазме хорошо выражено хроматофильное вещество. Они собирают информацию от всех слоев сетчатки как по вертикальным путям (нейросен-сорные клетки → биполярные нейроны → ганглиозные нейроны), так и по латеральным путям (нейросенсорные клетки → горизонтальные нейроны → биполярные нейроны → амакринные нейроны → ганглиозные нейроны) и передают ее в мозг. Тела ганглиозных нейронов образуют ганглиозный слой (stratum ganglionicum), а их аксоны (более миллиона волокон) формируют внутренний слой нервных волокон (stratum neurofibrarum) и далее зрительный нерв. Ганглиозные нейроны гетероморфны. Они отличаются друг от друга по морфологическим и функциональным свойствам.

Нейроглия. Три дифферона глиальных клеток найдены в сетчатке человека: клетки Мюллера (радиальные глиоциты), протоплазматические астроциты и микроглиоциты. Через все слои сетчатки проходят длинные, узкие радиальные глиальные клетки. Их удлиненное ядро лежит на уровне ядер биполярных нейронов. Базальные отростки клеток участвуют в образовании внутреннего, а апикальные отростки — наружного пограничного слоя. Клетки регулируют ионный состав окружающей нейроны среды, участвуют в процессах регенерации, играют опорную и трофическую роль.

Пигментный слой, эпителий (stratum pigmentosum), наружный слой сетчатки — состоит из призматических полигональных пигментных клеток — пиг-ментоцитов. Своими основаниями клетки располагаются на базальной мембране, которая входит в состав мембраны Бруха сосудистой оболочки. Общее количество пигментных клеток, содержащих коричневые гранулы меланина, варьирует от 4 до 6 млн. В центре желтого пятна пигментоциты более высокие, а на периферии они уплощаются, становятся шире. Апикальные части плазмолеммы пигментных клеток контактируют непосредственно с дистальной частью наружных сегментов нейросенсорных клеток.

Апикальная поверхность пигментоцитов имеет два вида микроворсинок: длинные микроворсинки, которые располагаются между наружными сегментами нейросенсорных клеток, и короткие микроворсинки, которые взаимодействуют с концами наружных сегментов нейросенсорных клеток. Один пигментоцит контактирует с 30-45 наружными сегментами нейросен-сорных клеток, а вокруг одного наружного сегмента палочковых нейронов обнаруживается 3-7 отростков пигментоцитов, содержащих меланосомы, фагосомы и органеллы общего значения. В то же время вокруг наружного сегмента колбочкового нейрона — 30-40 отростков пигментоцитов, которые длиннее и не содержат органелл, за исключением меланосом. Фагосомы образуются в процессе фагоцитоза дисков наружных сегментов нейросен-сорных клеток.

Наличие пигмента в отростках (меланосом) обусловливает поглощение 85-90 \% света, попадающего в глаз. Под воздействием света меланосомы перемещаются в апикальные отростки пигментоцитов, а в темноте мелано-сомы возвращаются в перикарион. Это перемещение происходит с помощью микрофиламентов при участии гормона меланотропина. Пигментный эпителий, располагаясь вне сетчатки, выполняет ряд важных функций: оптическую защиту и экранирование от света; транспорт метаболитов, солей, кислорода и т. п. из сосудистой оболочки к нейросенсорным клеткам и обратно, фагоцитоз дисков наружных сегментов нейросенсорных клеток и доставку материала для постоянного обновления плазматической мембраны последних; участие в регуляции ионного состава в субретинальном пространстве.

В пигментном эпителии велика опасность развития темновых и фотоокислительных деструктивных процессов. Все ферментативные и неферментативные звенья антиокислительной защиты присутствуют в клетках пигментного эпителия: пигментоциты участвуют в защитных реакциях, тормозящих перекисное окисление липидов с помощью ферментов микропероксисом и функциональных групп меланосом. Например, в них найдена высокая активность пероксидазы, как селе-нозависимой, так и селенонезависимой, и высокое содержание альфа-токоферола. Меланосомы в клетках пигментного эпителия, обладающие антиоксидантным свойством, служат специфическими участниками системы антиоксидантной защиты. Они эффективно связывают прооксидантные зоны (ионы железа) и не менее эффективно взаимодействуют с активными формами кислорода.

На внутренней поверхности сетчатки у заднего конца оптической оси глаза имеется округлое или овальное желтое пятно диаметром около 2 мм. Слегка углубленный центр этого образования называется центральной ямкой (fovea centralis) (рис. 12.6, а).

Центральная ямка — место наилучшего восприятия зрительных раздражений. В этой области внутренний ядерный и ганглиозный слои резко истончаются, а несколько утолщенный наружный ядерный слой представлен главным образом телами колбочковых нейронов.

Кнутри от центральной ямки (fovea centralis) имеется зона длиной 1,7 мм, в которой отсутствуют нейросенсорные клетки — слепое пятно, а аксоны ганглиозных нейронов формируют зрительный нерв. Последний при выходе из сетчатки через решетчатую пластинку склеры виден как диск зрительного нерва (discus nervi optici) с приподнятыми в виде валика краями и небольшим углублением в центре (excavatio disci).

Зрительный нерв — промежуточная часть зрительного анализатора. По нему информация о внешнем мире передается от сетчатки в центральные отделы зрительной системы. Впереди турецкого седла и воронки гипофиза волокна зрительного нерва образуют перекрест (хиазма), где волокна, идущие от носовой половины сетчатки, перекрещиваются, а идущие от вилочной части сетчатки не перекрещиваются. Далее в составе зрительного тракта перекрещенные и неперекрещенные нервные волокна направляются в латеральное коленчатое тело промежуточного мозга соответствующей гемисферы (подкорковые зрительные центры) и верхние холмики крыши среднего мозга. В латеральном коленчатом теле аксоны третьего

Рис. 12.6. Центральная ямка (а) и диск зрительного нерва (б):

а: 1 — сетчатка; 2 — центральная ямка (желтое пятно); б: 1 — сетчатка; 2 — диск зрительного нерва («слепое пятно»); 3 — зрительный нерв; 4 — стекловидное тело. Микрофотографии

нейрона заканчиваются и контактируют со следующим нейроном, аксоны которого, проходя под чечевицеобразную часть внутренней капсулы, формируют зрительную лучистость (radiatio optica), направляются в затылочную долю, зрительные центры, располагающиеся в области шпорной борозды, и в экстрастриарные зоны.

Регенерация сетчатки. Процессы физиологической регенерации палочковых и колбочковых нейронов происходят в течение всей жизни. Ежесуточно в каждой палочковой клетке ночью или в каждой колбочковой клетке днем

формируется около 80 мембранных дисков. Процесс обновления каждой палочковой клетки длится 9-12 сут.

Один пигментоцит ежесуточно фагоцитирует около 2-4 тыс. дисков, в нем образуется 60-120 фагосом, каждая из которых содержит 30-40 дисков.

Таким образом, пигментоциты обладают исключительно высокой фагоцитарной активностью, которая повышается при напряжении функции глаза в 10-20 раз и более.

Выявлены циркадные ритмы утилизации дисков: отделение и фагоцитоз сегментов палочковых клеток происходят обычно утром, а колбочковых — ночью.

В механизмах отделения отработанных дисков важную роль играет ретинол (витамин А), который в больших концентрациях накапливается в наружных сегментах палочковых клеток на свету и, обладая сильно выраженными мембранолитиче-скими свойствами, стимулирует указанный выше процесс. Циклические нуклеоти-ды (цАМФ) тормозят скорость деструкции дисков и их фагоцитоз. В темноте, когда цАМФ много, скорость фагоцитоза невелика, а на свету, когда содержание цАМФ снижено, она возрастает.

Васкуляризация. Ветви глазничной артерии формируют две группы разветвлений: одна образует ретинальную сосудистую систему сетчатки, васку-ляризующую сетчатку и часть зрительного нерва; вторая образует цилиар-ную систему, снабжающую кровью сосудистую оболочку, ресничное тело, радужку и склеру. Лимфатические капилляры располагаются только в склеральной конъюнктиве, в других участках глаза они не найдены.

Вспомогательный аппарат глаза

К вспомогательному аппарату глаза относятся глазные мышцы, веки и слезный аппарат.

Глазные мышцы. Они представлены поперечнополосатыми (исчерченными) мышечными волокнами миотомного происхождения, которые прикрепляются сухожилиями к склере и обеспечивают движение глазного яблока.

Веки (palpebrae). Веки развиваются из кожных складок, образующихся кверху и книзу от глазного бокала. Они растут по направлению друг к другу и спаиваются своим эпителиальным покровом. К 7-му мес внутриутробного развития спайка исчезает. Передняя поверхность век — кожная, задняя — конъюнктива — продолжается в конъюнктиву глаза (слизистую оболочку) (рис. 12.7). Внутри века, ближе к его задней поверхности, располагается тарзальная пластинка, состоящая из плотной волокнистой соединительной ткани. Ближе к передней поверхности в толще век залегает кольцевая мышца. Между пучками мышечных волокон располагается прослойка рыхлой соединительной ткани. В этой прослойке оканчивается часть сухожильных волокон мышцы, поднимающей верхнее веко.

Другая часть сухожильных волокон этой мышцы прикрепляется прямо к проксимальному краю тарзальной (соединительнотканной) пластинки. Наружная поверхность покрыта тонкой кожей, состоящей из тонкого многослойного плоского ороговевающего эпителия и рыхлой соединительной ткани, в которой залегают волосяные эпителиальные влагалища коротких пушковых волос, а также ресниц (по краям смыкающихся частей век).

Рис. 12.7. Веко (сагиттальный срез): I — передняя (кожная поверхность); II — внутренняя поверхность (конъюнктива). 1 — многослойный плоский ороговеваю-щий эпителий (эпидермис) и соединительная ткань (дерма); 2 — рудиментарная хрящевая пластинка; 3 — трубчатые мерокринные потовые железы; 4 — круговая мышца века; 5 — мышца, поднимающая веко; 6 — слезные железы; 7 — апо-кринные потовые железы; 8 — простые трубчато-альвеолярные (мейбомиевы) железы, вырабатывающие сальный секрет; 9 — простые разветвленные альвеолярные голокринные (ресничные) железы, выделяющие сальный секрет; 10 — ресница

В соединительной ткани кожи находятся мелкие трубчатые мерокринные потовые железы. Около волосяных фолликулов встречаются апокринные потовые железы. В воронку корня ресницы открываются мелкие простые разветвленные сальные железы. Вдоль внутренней поверхности века, покрытой конъюнктивой, располагаются 20-30 и более особого вида простых разветвленных трубчато-альвеолярных голокринных (мейбомие-вых) желез (в верхнем веке их больше, чем в нижнем), вырабатывающих сальный секрет. Над ними и в области свода ( fornix) лежат мелкие слезные железы. Центральная часть века на всем его протяжении состоит из плотной волокнистой соединительной ткани и пучков волокон поперечнополосатой мышечной ткани, ориентированных по вертикали (m. levator palpebrae superioris), а вокруг глазной щели кольцевая мышца (m. orbicularis oculi). Сокращения этих мышц обеспечивают смыкание век, а также смазывание передней поверхности глазного яблока слезной жидкостью и липидным секретом желез.

Сосуды века образуют две сети — кожную и конъюнктивальную. Лимфатические сосуды формируют третье дополнительное, тарзальное сплетение.

Конъюнктива — тонкая прозрачная слизистая оболочка, которая покрывает заднюю поверхность век

и переднюю часть глазного яблока. В области роговицы конъюнктива срастается с ней. Многослойный не-ороговевающий эпителий располагается на соединительнотканной основе. В составе эпителия находятся бокаловидные клетки, вырабатывающие слизь. Под эпителием в соединительной ткани конъюнктивы в области век имеется хорошо выраженная капиллярная сеть, способствующая всасыванию лекарственных препаратов (капель, мазей), которые наносятся на поверхность конъюнктивы.

Слезный аппарат глаза. Он состоит из слезопродуцирующей слезной железы и слезоотводящих путей — слезное мясцо, слезные канальцы, слезный мешок и слезно-носовой канал.

Слезная железа располагается в слезной ямке глазницы и состоит из нескольких групп сложных альвеолярно-трубчатых серозных желез. Концевые отделы включают диффероны секреторных клеток (лакримоци-тов) и миоэпителиоцитов. Слабощелочной секрет слезных желез содержит около 1,5 \% хлорида натрия, незначительное количество альбумина (0,5 \%), лизоцим, оказывающий бактерицидное действие, и IgA. Слезная жидкость увлажняет и очищает роговицу глаза. Она непрерывно выделяется в верхний конъюнктивальный свод, а оттуда движением век направляется на роговицу, медиальный угол глазной щели, где образуется слезное озерцо. Сюда открываются устья верхнего и нижнего слезных канальцев, каждый из которых впадает в слезный мешок, а он продолжается в слезно-носовой проток, открывающийся в нижний носовой ход. Стенки слезного мешка и слезно-носового протока выстланы двух- и многорядным эпителием.

Возрастные изменения. С возрастом ослабляется функция всех аппаратов глаза. В связи с изменением общего метаболизма в организме в хрусталике и роговице часто происходят уплотнение межклеточного вещества и помутнение, которое практически необратимо. У пожилых людей откладываются липиды в роговице и склере, что обусловливает их потемнение. Утрачивается эластичность хрусталика, и ограничивается его аккомодационная возможность. Склеротические процессы в сосудистой системе глаза нарушают трофику тканей, особенно сетчатки, что приводит к изменению структуры и функции рецепторного аппарата.

Оцените статью
yamedik
Добавить комментарий