ГЕНЫ ИММУНОГЛОБУЛИНОВ

Зародышевые гены иммуноглобулинов. У здорового человека B-лимфоциты в течение жизни создают несколько миллионов вариантов антител, связывающих разные антигены (потенциально 1016 антигенов). Никакой геном физически не несёт столько различных структурных генов. Количество наследуемого от родителей генетического материала (ДНК), определяющего биосинтез антител, не так уж и велико — немногим более 120 структурных генов. Это наследуемое множество генов — зародышевые гены иммуноглобулинов (зародышевая конфигурация генов).

Гены вариабельных доменов

Во всех соматических клетках, включая СКК, гены иммуноглобулинов находятся именно в зародышевой конфигурации, где гены V-участков представлены в виде отдельных сегментов, расположенных друг относительно друга на значительном расстоянии и сгруппированных в несколько кластеров: собственно V (вариабельный), J (связующий), а у тяжёлых цепей также D (от англ. Diversity — разнообразие). Процесс формирования разнообразия структурных генов для миллионов вариантов V-участков молекул иммуноглобулинов продолжается в течение всей жизни в процессе дифференцировки B-лимфоцитов и является запрограммированнослучайным. В его основе лежат 3 механизма, свойственные только генам антигенсвязывающих молекул (иммуноглобулин, TCR): соматическая рекомбинация, неточность связей между V, D и J сегментами и гипермутагенез.

• Соматическая рекомбинация. На самом раннем этапе дифференцировки лимфоцитов начинается сложный генетический процесс объединения сегментов ДНК, предназначенных для кодирования разных частей антигенсвязывающих молекул — V- и C-доменов. В непрерывную последовательность ДНК соединяются по одному сегменту из V-, D- и J-областей, при этом в каждом отдельном B-лимфоците возникает уникальная комбинация VDJ для тяжёлой цепи и VJ — для лёгкой цепи. Вся остальная ДНК зародышевого гена выбрасывается из генома в виде кольцевых ДНК.

◊ Число возможных комбинаций можно подсчитать. Для к-цепи из 40 V-сегментов и 5 J-сегментов может получиться 40×5=200 вариантов V-области; для λ-цепи — 30×4=120 вариантов; всего для лёгких цепей 320 вариантов; для тяжёлой цепи 50V×30D×6J=9000 вариантов антигенсвязывающих областей. В целой молекуле иммуноглобулина разные лёгкие и тяжёлые цепи объединяются в тетрамер также случайным образом (по крайней мере теоретически). Число случайных сочетаний из 320 и 9000 — около 3×106.

◊ Рекомбиназы. Рекомбинацию ДНК генов иммуноглобулинов катализируют специальные ферменты — рекомбиназы (RAG1 и RAG2 — Recombination-Activating Gene). Они же катализируют рекомбинацию ДНК генов TCR в T-лимфоцитах, т.е. рекомбиназы — уникальные ферменты лимфоцитов. Однако в В-лимфоцитах эти ферменты не «трогают» гены TCR, а в T-лимфоцитах «обходят» гены иммуноглобулинов. Следовательно, до начала процесса перестройки ДНК в клетке уже существуют регуляторные белки, различные у T- и В-лимфоцитов.

Неточность связи V-D-J. Под неточностью связей сегментов V, D и J понимают тот факт, что при их формировании происходит добавление лишних нуклеотидов. Выделяют 2 типа таких нуклеотидов: P- и N-нуклеотиды.

◊ Нуклеотиды P (от англ. Palindromic sequences — зеркальные последовательности) возникают на концах каждого из сегментов, вовлечённых в рекомбинацию, при вырезании одноцепочечных петель ДНК (шпилек) и «достройки хвостов» ферментами репарации ДНК.

◊ Нуклеотиды N (от англ. Nontemplate-encoded — нематрично кодируемые), характерные только для тяжёлых цепей, случайным образом пристраиваются к концам V-, D- и J-сегментов специальным ферментом — терминальной дезоксинуклеотидилтрансферазой.

◊ С учётом присоединения N- и P-нуклеотидов число вариантов антигенсвязывающих областей целых молекул иммуноглобулинов составляет порядка 1013. Если учесть аллельные варианты V-, D- и J-сегментов, то мыслимое разнообразие составит около 1016 (в действительности это

число меньше, поскольку в организме нет такого количества лимфоцитов). ◊ В 2/3 случаев «платой» за попытки увеличить разнообразие антигенсвязывающих областей антител служит непродуктивная рекомбинация генов, т.е. сдвиг рамки считывания или генерация стоп-кодонов, делающий невозможной трансляцию белка.

• Гипермутагенез — запланированное повышение частоты точечных мутаций — отличает гены иммуноглобулинов даже от генов TCR. Гипермутагенез имеет место только в В-лимфоцитах во время иммуногенеза (т.е. после состоявшегося распознавания антигена и начавшегося иммунного ответа) в зародышевых центрах лимфоидных фолликулов периферических лимфоидных органов и тканей (лимфатических узлов, селёзенки, диффузных скоплений). Частота точечных мутаций в V-генах иммуноглобулинов достигает 1 нуклеотида из 1000 на 1 митоз (т.е. каждый второй В-лимфоцит клона в зародышевом центре приобретает точечную мутацию в V гене иммуноглобулинов), тогда как для всей остальной ДНК она на 9 порядков ниже.

Гены константных доменов

Структурные гены константных доменов полипептидных цепей иммуноглобулинов расположены в тех же хромосомах, что и V-, D- и J-гены, к 3′-концу от J-сегментов.

• Лёгкая цепь (рис. 5-4). Для лёгких κ- и λ-цепей существует по одному C-гену — Сκ и Cλ «Стыковка» нуклеотидного кода для V- и C-доменов лёгких цепей происходит на уровне не ДНК, а РНК — по механизму сплайсинга первичного транскрипта РНК.

• Тяжёлая цепь (рис. 5-5) каждого изотипа иммуноглобулинов также кодируется отдельным C-геном. У человека такие гены расположены в следующем порядке, считая от J-сегмента к 3′-концу: Сμ, Сδ, Сγ3, Сγ1, ψСε (псевдоген е-цепи), Cα1, Cγ2, Cγ4, Сε, Сα2.

Завершившие лимфопоэз В-лимфоциты (независимо от специфичности их BCR) экспрессируют иммуноглобулины только классов IgM и IgD. При этом мРНК транскрибируется в виде непрерывного первичного транскрипта с перестроенных генов VDJ и

Рис. 5-4. Структура генов и синтез белка лёгкой (L) цепи иммуноглобулинов

Сμ/Cδ. При этом ДНК остальных C-генов других изотипов остаётся нетронутой. В результате альтернативного сплайсинга первичного транскрипта образуются мРНК отдельно для тяжёлых цепей IgM и IgD, которые и транслируются в белок. Этим процессом заканчивается полноценный лимфопоэз В-клеток.

Рис. 5-5. Структура генов тяжёлой (Н) цепи иммуноглобулинов человека

Переключение изотипов иммуноглобулинов

В процессе развития иммунного ответа, т.е. после распознавания антигена и под действием определённых цитокинов и молекул клеточной мембраны T-лимфоцитов, может происходить переключение синтеза иммуноглобулинов на другие изотипы — IgG, IgE, IgA (рис. 5-6).

• Переключение изотипа тяжёлой цепи тоже идёт по механизму рекомбинации ДНК: к ранее перестроенной комбинации VDJ присоединяется один из C-генов тяжёлой цепи (Су1, Су2, Су3,

Рис. 5-6. Рекомбинация ДНК при переключении изотипов иммуноглобулинов В-лимфоцитов

Сγ4, Сε, Сα1 или Сα2). При этом происходит разрыв ДНК по областям переключения — SR (Switch Region), расположенным в интронах перед каждым C-геном (за исключением С5).

• ДНК C-генов, предшествующих задействованному, элиминируется в виде кольцевых структур, поэтому дальнейшее переключение изотипа возможно только по направлению к 3′-концу.

• Установлено, что гипермутагенез и переключение изотипов иммуноглобулинов катализируются ферментом AID (Activation Induced Cytidine Deaminase — цитидиндезаминаза, индуцируемая активацией). Этот фермент специфически атакует экспрессированные гены иммуноглобулинов и отщепляет аминогруппы от цитидиновых оснований, которыми богата ДНК этих генов. В результате этого цитозины преобразуются в урацилы, которые распознаются и вырезаются ферментами репарации ДНК. Последующая цепочка каталитических реакций с участием более чем десяти различных белков (эндонуклеаз, фосфатаз, полимераз, гистонов и т.п.) приводит к появлению мутаций (в случае гипермутагенеза) или двуцепочечных разрывов в ДНК по областям переключения изотипов.

Оцените статью
yamedik
Добавить комментарий