На ранних стадиях развития земной жизни размножение живых форм происходило бесполым путем. И сейчас бесполым способом размножаются прокариоты. Типичный пример бесполого размножения у эукари-
от — митотическое деление клетки. Бесполое размножение встречается у современных эукариотических организмов среди простейших одноклеточных форм, в том числе ведущих паразитический образ жизни (шизогония у малярийного плазмодия), а также среди низкоорганизованных многоклеточных (гидры, кольчатые черви). Бесполое размножение путем образования почек, стеблевых и корневых клубней, луковиц характерно для растений. В процессе исторического развития живых форм возник половой процесс, представляющий собой способ увеличить биоинформационное разнообразие потомства и таким образом расширить возможности действия естественного отбора. Представление о половом процессе дает явление конъюгации, например, у инфузорий. Оно заключается во временном соединении двух особей с целью обмена (рекомбинации) наследственным материалом. В результате образуются организмы, генетически отличные от каждого из участников конъюгации. Затем такие особи размножаются бесполым путем. Поскольку при конъюгации количество инфузорий не увеличивается, говорить о размножении в прямом смысле нет оснований. Можно заключить, что первоначально половой процесс не решал задачи размножения. Порядка 3 млрд лет назад в ходе эволюции возникает половое размножение, типичные черты которого — образование половых клеток или гамет (рис. 4.46) и оплодотворение. Соответственно жизненный цикл представителей видов, размножающихся половым путем, представлен двумя фазами (рис. 4.47) — диплофазой (половозрелая особь, соматические клетки, характеризующиеся диплоидным или 2n числом хромосом и 2с количеством ДНК) и гаплофазой (гаметы, характеризующиеся гапло-
Рис. 4.46. Половые клетки: а — яйцеклетка; б — сперматозоиды: 1 — цитоплазма; 2 — ядро; 3 — хроматин ядра; 4 — шейка; 5 — жгутик; 6 — головка
Рис. 4.47. Фазы жизненного цикла многоклеточных животных
идным или n числом хромосом и с количеством ДНК). В основе процесса образования половых клеток (гаметогенез) лежит особая форма клеточного деления — мейоз, обеспечивающая доведение числа хромосом до гаплоидного. Одновременно первое деление мейоза, благодаря кроссинговеру в профазе и независимому расхождению негомологичных хромосом материнского и отцовского происхождения в анафазе (см. п. 4.3.4), служит эффективным инструментом комбинативной ге-нотипической изменчивости (см. п. 4.1.1). Оплодотворение, еще один инструмент комбинативной генотипической изменчивости, заключается в слиянии двух половых клеток с восстановлением типичного для соматических клеток особей соответствующего вида диплоидного числа хромосом (см. п. 4.3.4, кариотип).
Для видов, размножающихся половым путем, типичен половой диморфизм (рис. 4.48), который заключается в наличии различающихся по фенотипу женских и мужских особей или самок и самцов.
Половой диморфиз как биологическое явление проявляет себя в патологии людей. В истории здравоохранения особенности биологии женщин определили возникновение в свое время отдельной медицинской дисциплины — гинекологии. На наших глазах укрепляются позиции медицинской дисциплины, которая своим возникновением обязана особенностям биологии мужчин, — андрологии. Многое из области интересов гинекологии, с одной стороны, и андрологии, с другой, связано со специфической ролью, которую играют женщины и мужчины в осу-
Рис. 4.48. Половой диморфизм у людей. Характерны различия: 1 — по кариоти-пу и главному половому гормону; 2 — структуре волос и характеру оволосения; 3 — строению гортани; 4 — развитию молочных желез; 5 — развитию мускулатуры; 6 — строению половых органов; 7 -распределению жировой ткани; 8 — показателям роста длинных трубчатых костей. Половой диморфизм проявляется также на уровне гамет (см. рис. 4.47)
ществлении детородной функции. Вместе с тем медицина располагает фактами, свидетельствующими, например, о различиях (при одинаковой дозировке) в терапевтическом эффекте, спектре и выраженности побочных реакций, а также об особенностях фармакодинамики и фармако-кинетики (параметры, характеризующие метаболизм и, следовательно, «судьбу» медицинского препарата в организме больного) ряда лекарственных средств в зависимости от того, идет ли речь о пациенте или о пациентке. Злокачественные новообразования одной органной локализации чаще встречаются у женщин, тогда как другой — у мужчин. При этом речь не идет об органах репродуктивной системы (молочная железа, матка, яичники — у женщин, предстательная железа — у мужчин). Различия в средней продолжительности жизни мужчин и женщин — реальность, хотя конкретные цифры колеблются от популяции к популяции. Так, в США (1979) и Франции (1980) они превышали 8 лет, в Греции (1981) составили 4,5 года, в Болгарии и Японии (1981) были равны 5,5 годам — все в пользу женщин.
Современная живая природа дает примеры различных способов определения пола. При прогамном способе, например, пол организма определяется особенностями структуры яйцеклетки, которая была оплодотворена сперматозоидом. Так, у коловраток крупные яйцеклетки дают самок, более мелкие — самцов. При эпигамном способе мужской или женский пол определяется факторами внешней среды, например, температурой в кладке яиц: у многих видов черепах при температуре ниже 27 °С развиваются только самцы, свыше 30 °С — только самки, в интервале 27-30 °С — самцы и самки. У большинства видов животных, размножающихся половым путем, в процессе исторического развития закрепились разные варианты «надежного» генотипического способа определения пола. При эусингамном варианте (пчелы, муравьи), самцы первично гаплоидны, поскольку они развиваются из неопло-дотворенных яйцеклеток, тогда как самки диплоидны. Напомним, что в процессе развития соматические клетки самцов таких животных становятся диплоидными. У плодовых мух наблюдается «балансовый» вариант генотипического способа, при котором пол определяется отношением числа хромосом Х к числу наборов аутосом (А). Если указанное отношение равно единице (ХХ/2А), развивается самка, при значении отношения 0,5 (XY/2A) — самец, особи с кариотипом ХХ/3А (отношение меньше единицы, но больше 0,5) или XY/ЗА (отношение меньше 0,5) — интерсексы. Исследования, выполненные также на плодовых мухах, заставляют думать, что генотипический механизм формирования ком-
плекса фенотипических признаков женского или мужского пола у них более сложен. Так, у дрозофил на хромосоме 3 обнаружен локус tra или t с геном, изменяющим пол организма в сторону мужского вне зависимости от значений отношения числа хромосом X и числа наборов аутосом. Особи как с генотипом XY/2Att, так и с генотипом XX/2Att — фенотипи-чески самцы, однако первые плодовиты (образуют сперматозоиды), а вторые стерильны. Можно заключить, что для сперматогенеза хромосома Y необходима.
Предположительно с точки зрения интересов эволюционного процесса оптимален хромосомный вариант, получивший повсеместное распространение среди высокоорганизованных многоклеточных животных (амниоты — птицы, млекопитающие, включая человека), однако встречающийся у анамниа (земноводные) и среди членистоногих (некоторые виды клопов). Для этого варианта генотипического способа характерно, что один из полов (гомогаметный) образует одинаковые гаметы, тогда как второй (гетерогаметный) — разные. У млекопитающих гомогаметны женские особи, имеющие в кариотипе пару одинаковых половых хромосом (XX), а гетерогаметны — мужские особи, имеющие в кариотипе пару разных половых хромосом (XY). У земноводных и птиц гомогаметны мужские особи (пара одинаковых половых хромосом — ZZ), тогда как гетерогаметны женские особи (пара разных половых хромосом — ZW). Легко видеть, что при таком варианте генотипического способа определения один из полов (гомогаметный) по паре половых хромосом характеризуется как гомозиготный, тогда как второй (гетеро-гаметный) — как гетерозиготный.
Предположительно в генотипическом определении пола у парамеций принимает участие один локус, т. е. задействован моногенный механизм. При этом есть основания думать, что у парамеций особи одного пола по указанному локусу гомозиготны, а другого — гетерозиготны.
Хромосомный (или более редкий моногенный, см. пример с парамециями) вариант определения пола оптимален для процесса эволюции потому, что он, благодаря гомогаметности и гетерогаметности полов и отношению разнополых особей в период активного размножения 1:1 (у человека таковым отношение между мужскими и женскими особями становится в юношеском возрасте, хотя среди новорожденных на 100 девочек приходится в среднем 106 мальчиков), обеспечивает:
• максимальную вероятность встречи разнополых особей в целях репродукции;
• наиболее высокий уровень разнообразия генетической информации родителей, привлекаемой для создания генотипов потомков в каждом очередном поколении;
• поддержание оптимальной численности особей в популяциях. Известны виды, у которых гетерогаметный пол представлен особями
с парой разных половых хромосом — тогда как особи гомогаметного пола имеют одну половую хромосому — Х0. Встречаются также иные варианты. Так, у клопов из рода Protenor самки — ХХ, самцы — Х0. Напомним, что среди людей лица с моносомией по паре половых хромосом (ХО) характеризуются патологическим фенотипом, в целом сдвинутым в женскую сторону (синдром Шерешевского-Тернера).
Наличие в человеке биологического, социального и духовного начал (см. предисловие) объясняет, почему проблема пола, отнесенная к людям, имеет много аспектов (табл. 4.4).
Таблица 4.4. Пол человека: биосоциальные факторы определения пола у людей — генетика и среда
У млекопитающих, в том числе у человека, эмбриональная закладка половых желез (гонады) в виде парной структуры (половой валик) поначалу не имеет признаков дифференциации по мужскому (семенник) или женскому (яичник) типу, т.е. является индифферентной (бипо-тенциальной). Направление дифференциации зависит от комбинации пары половых хромосом в зиготе, т.е. от того, была ли оплодотворена яйцеклетка сперматозоидом с хромосомой Х или с хромосомой Y. В присутствии в кариотипе зиготы хромосомы Y (комбинация пары половых хромосом XY) развитие происходит по мужскому типу, что связано с расположением на указанной хромосоме гена SRY (Sex determining
Region Y, Ур11.31-32). Названный ген контролирует образование транскрипционного фактора, который благодаря сродству к промоторам активирует гены, необходимые для развития семенника. Поэтому ген SRY называют также TDF (Testis Determining Factor). У человека экспрессия гена SRY (TDF) начинается на стадии зиготы. На хромосоме Y расположены также гены AZF (Azoospermia Factor, Уq11) и H-Y антигена. Первый участвует в регуляции сперматогенеза: его мутации ведут к снижению продукции сперматозоидов вплоть до полного подавления. Фе-нотипически это проявляется в олигоспермии или азооспермии, т. е. в недостаточном количестве или полном отсутствии спермиев в семенной жидкости. Второй обусловливает синтез белков клеточных оболочек. В настоящее время его участие в генетическом контроле развития феноти-пических признаков по мужскому типу оспаривается.
В развитии эмбриональной закладки гонад по мужскому типу участвует ряд аутосомных генов. Среди них гены АМН или MIS (Anti-Mullarian Hormone или Mullerian Inhibiting Substance, 19р13.2-3), SOX9 (Sox-related HMG-box-containing gene, расположен на хромосоме 17) и WT1 ( Wilm s Tumore-associated gene 1, расположен на хромосоме 11). Экспрессия двух последних генов происходит в клетках закладки половых желез на индифферентной стадии. Мыши-мутанты с «выключенным» геном WT1 нежизнеспособны: у них не развиваются гонады и почки. На хромосоме Х в зоне DSS (Dosage-Sensitive Sex reversal) расположен ген DAX1 или АНС (Adrenal Hypoplasia Congenita), который репрессируется (подавляется) в условиях активации гена SRY, т. е. в случае начала развития гонад по мужскому типу. При отсутствии активности гена SRY ген DAX1 активно функционирует, что необходимо для развития гонад по женскому типу (яичники). В настоящее время названная функция гена DAX1 подвергается сомнению. Ген АМН ответствен за редукцию мюл-леровых протоков, не нужных для развития мужской репродуктивной системы, так как семявыносящие пути и ряд других структур образуются из вольфовых протоков.
На 6-й неделе внутриутробного развития гонады дифференцированы по полу. Если к названному сроку беременности развитие гонад по мужскому типу не началось, «по умолчанию» развитие комплекса половых признаков сдвигается в направлении женского фенотипа. Описанные события, ведущая роль в которых принадлежит, видимо, ге-нотипическим факторам (наличие в генотипе соответствующих генов и их взаимодействие, особенности генотипической среды или среды 1-го порядка), составляют содержание периода первичной детерминации
пола развивающегося организма. Главный результат этого этапа состоит в дифференциации первоначально индифферентной эмбриональной закладки половых желез в семенники или яичники.
Начиная с 7-й недели внутриутробного развития, когда гонады приобретают структуру либо семенника, либо яичника, начинается период вторичной детерминации пола. В этом периоде главную роль играют гормоны. Так как гормоны являются сигнальными молекулами, клеточные оболочки должны иметь молекулы-рецепторы, специфически узнающие гормон и запускающие соответствующие внутриклеточные сигнальные пути. Образование гормонов и рецепторов находится под генетическим контролем.
Главный мужской половой или андрогенный гормон тестостерон образуется в семенниках клетками Лейдига. Для развития полноценного фенотипического комплекса мужского типа необходима также активность гена АМН, контролирующего продукцию андрогенного гормона, подавляющего развитие мюллеровых протоков. Активация названного гена обусловлена продуктом активности гена SRY. Под влиянием тестостерона из вольфовых протоков образуются мужские внутренние половые органы, такие, как сямявыносящие канальцы, индуцируется развитие семенных пузырьков и придатка яичка (эпидидимис), а также формирование на основе мочеполового синуса таких наружных половых органов, как простата, половой член, мошонка. Действие тестостерона требует наличия в клеточных оболочках белка-рецептора, образование которого контролирует ген AR (Xq11). Оба названных выше андроген-ных гормона необходимы для развития по мужскому типу (маскулинизирующее действие) экстрагенитальных органов и тканей-мишеней, что обусловливает половой диморфизм центральной нервной системы, мускулатуры, пропорций и размеров тела, внутренних органов, метаболизма и т.д.
При нарушении образования в организме андрогенных гормонов или рецепторов к ним наблюдаются отклонения в развитии фенотипическо-го комплекса мужского пола (сдвиг в сторону фенотипического комплекса женского пола) разной степени — от гипоспадии (относительно низкое расположение мочеиспускательного канала) легкой степени и/ или крипторхизма (неопущение яичка в мошонку) до оформления выраженного женского фенотипа (синдром тестикулярной феминизации или Морриса). Причиной этих отклонений могут быть как мутации соответствующих генов или нарушение межгенных взаимодействий (генотипическая среда или среда 1-го порядка), в том числе в формате
явления генокопирования, так и изменения в ходе морфогенетических процессов в связи с особенностями среды 2а (внутренняя среда развивающегося организма) и 2б (внутренняя среда организма женщины, вынашивающей ребенка), в том числе спровоцированными условиями внешней среды или среды 3-го порядка — явление фенокопирования. В период вторичной детерминации пола по мужскому варианту определенную роль играют и женские половые гормоны — эстрогены. Так, они необходимы для созревания костной ткани, а также обеспечивают некоторые качественные характеристики сперматозоидов.
На настоящий момент можно думать, что количество генов, вовлеченных в развитие и обеспечение функций яичек и простаты, составляет не менее 1200, яичника — 500, матки — 1800. В таких условиях трудно говорить о моногенном принципе генотипического обеспечения развития и функционирования фенотипического комплекса признаков пола. Именно поэтому в настоящее время принцип генетической регуляции половой дифференцировки у человека нередко определяют как сетевой, подразумевая под этим, что действие многих генов-участников взаимосвязано и взаимообусловлено.
Наряду с фенотипическими признаками, связанными с мужским или женским полом непосредственно, выделяют также признаки, зависящие от пола и ограничиваемые полом. В данном случае речь может идти, например, о генах раннего облысения, которые у мужчин ведут себя как доминантные, а у женщин как рецессивные. Известно, что не только у коров, но и у быков (нельзя исключить, что и у мужчин) есть гены, контролирующие возможность продукции молока, причем определенной жирности. У быков эти гены, однако, не экспрессируются.
Нельзя также забывать о том, что существует Х- и Y-сцепленное наследование признаков.
Вопросы для самоконтроля
1. В чем состоят свойства наследственности и изменчивости на разных уровнях организации жизни?
2. Перечислите формы изменчивости и дайте их краткую характеристику?
3. Является ли ген структурной или функциональной единицей генетического материала? Каковы свойства гена?
4. Что такое аллели генов, и каков механизм их возникновения?
5. Перечислите уровни организации генетического материала. В чем биологическое значение каждого уровня?
6. Что такое «кариотип», и чем он характеризуется?
7. Какие типы наследования существуют? Какие виды взаимодействия генов реализуются при каждом типе наследования?
8. Что такое «фенотип»? Какие наследственные и средовые факторы принимают участие в его формировании?
9. Что такое «пол»? Каковы уровни его формирования у человека?
10. Какие могут быть нарушения формирования пола у человека?