МЕТОДЫ ИЗУЧЕНИЯ НАСЛЕДСТВЕННОСТИ ЧЕЛОВЕКА

Применительно к человеку классический генетический анализ исключен из-за невозможности экспериментальных скрещиваний, длительности времени между поколениями и малым количеством потомства на пару (семью). Поэтому для изучения нормальной и патологической наследственности используют другие методы.

1. Генеалогический метод (метод родословных). В медицинской генетике этот метод называют клинико-генеалогическим. Генеалогия — это учение о родословных. Поэтому смысл данного метода заключается в изучении наследственности человека путем учета и анализа распределения наследственных признаков в семьях, т. е. в изучении наследственности человека по родословным. Метод сводится к изучению родственных связей и передачи признаков среди близких и дальних родственников, прямых и непрямых.

Исследование того или иного признака в семье начинают с того члена семьи, который представляет интерес или является больным (исходный пациент, или пробанд). Потомки одних и тех же родителей, происходящие из разных зигот (братья и сестры), получили название сибсов. Родословные составляют путем учета возможно большего количества родственников, используя для обозначения поколений, мужчин, женщин, браков, типов зиготности и т. д., различные символы, перечень которых приводится на рис. 65.

С помощью этого метода возможно установление наследственного характера признака, типа и частоты наследования того или иного

Рис. 65. Символы, используемые при составлении родословных человека

признака, сцепленности признака с полом, а также определение зависимости или независимости распределения признаков. Анализируя родословные, можно обнаружить различия между близким сцеплением и аллелизмом. На рис. 66 приводится в качестве примера родословная с доминантным наследованием, а на рис. 67 — родословная, демонстрирующая независимое распределение неаллельных генов. Метод характеризуется относительно большой разрешающей способностью. Однако он имеет и недостаток, связанный с трудностями сбора сведений о проявлении того или иного признака у родственни- ков пробанда, поскольку люди плохо знают свою родословную.

2. Цитогенетический метод. Этот метод заключается в цитологическом анализе кариотипа человека в норме и патологии. С его помощью исследуют нарушения, изменяющие количество и структуру хромосом.

Цитогенетический метод основывается на данных о хромосомах. В соответствии с денверовской классификацией хромосомы обозна- чают номерами, увеличивающимися по мере уменьшения размеров хромосом. В соответствии с рекомендациями IV Международного

конгресса по генетике человека в Париже (1971) при описании добавочных хромосом их число помещают после общего числа хромосом и половых хромосом со знаком «+» или «-» перед номером вовлеченной аутосомы. Например, запись (формула) 47,ХХ+21 означает кариотип женщины с трисомией по 21-й паре.

Рис. 66. Родословная, позволяющая проследить доминантное наследование

синдактилии

Напротив, кариотип мужчины с экстрахромосомой X обозначают как 47,XXY. Знак плюс или минус помещают, сопровождая хромо- сомный символ, чтобы указать удлинение или укорочение хромосомного плеча. Буква q символизирует длинное плечо, а р — короткое. Например, запись 46,XY, 1 q+ указывает на увеличение длины длинного плеча хромосомы ? 1. Кариотип 47,XY, +14p+ символизирует мужчину с 47 хромосомами, включая дополнительную хромосому (? 14) с повышением в длине ее короткого плеча. Сокращения def (дефишенс), dup (дупликация), r (кольцо, возникающее после воссоединения двух разрывов в хромосоме), inv (инверсия) и t (транслокация) обозначают аберрации хромосом. Номера хромосомы или хромосом помещают после сокращения в скобках. Например, запись 46,ХХ, r (18) означает кариотип женщины с 46 хромосомами, включая r-хромосому ? 18. Формула 46,Х, inv (X q) есть кариотип женщины с 46 хромосомами, включая одну нормальную Х-хромосому и изохромосому X (с двумя генетически идентичными плечами) для длинного плеча хромосомы X. Банды помечают числами в порядке от центромеры вдоль короткого плеча ( р) и длинного плеча (q) хромосомы.

Главная ценность цитогенетического метода заключается в том, что он позволяет установить связь между нарушениями кариотипа

Рис. 67. Родословная, демонстрирующая независимое распределение

хромосом

и изменениями фенотипа, т. е. связь между нарушениями в определенной хромосомной паре и определенным наследственным дефектом. Это в свою очередь помогает найти принадлежность гена к опре- деленной группе сцепления. Основное преимущество этого метода заключается в его простоте. Однако данный подход имеет существенные ограничения. Прежде всего с его помощью могут быть исследованы только крупные нарушения в структуре хромосом, видимые с помощью светового микроскопа. Следовательно, это ограничивает количество анализируемых генетических детерминантов. Далее, этот подход может обеспечить изучение генотипов лишь на уровне групп сцепления.

3. Популяционный метод. Этот метод основан на законе Харди- Вайнберга и заключается в изучении распространения генов в популяциях человека. В условиях свободного скрещивания частота, с которой возможна встреча двух аллелей в диплоидном организме, равна произведению частот каждого аллеля. Если относительную частоту доминантного аллеля А в двухаллельной системе обозначить р, относительную частоту рецессивного аллеля а обозначить q и если р + q=1, то при свободном скрещивании частота трех генотипов составляет значения: АА = р2, Аа = 2pq и аа = q2. Следовательно, зная о равновесии по Харди-Вайнбергу, можно определить влияние названных выше факторов на относительные частоты этих трех генотипов в поколениях. Как видно, данный метод позволяет изучать

не только географическое распространение и частоту тех или иных генов, но и влияние на эти показатели разных факторов.

4. Близнецовый метод. Этот метод заключается в изучении генетических закономерностей, присущих однояйцовым (монозиготным) и разнояйцовым (дизиготным) близнецам. Обычно сопоставляют монозиготных партнеров с дизиготными, а результаты анализа близнецовой выборки сравнивают с результатами анализа общей популяции. Метод позволяет выяснить наследственную предрасположенность в проявлении ряда признаков и заболеваний, установить коэффициент наследуемости и степень влияния факторов внешней среды на проявление признаков. Успех в использовании этого метода чаще связан с изучением тех признаков, которые не подвержены резкому влиянию со стороны внешних факторов, например группа крови, пигментация глаз и др. Недостаток метода связан с неполнотой сведений о пренатальном и постнатальном развитии близнецов.

5. Перенос генов. Под этим названием различают группу методов, позволяющих перенос генов от одних клеток к другим.

Гибридизация соматических клеток — это метод, основанный на том, что соматические клетки животных способны к гибридизации, при которой образуются гибриды клеток, в ядрах которых содержится набор хромосом обеих сходных клеточных линий, т. е. гибриды являются полиплоидами. В процессе роста гибриды могут терять отдельные хромосомы. Для гибридов, полученных из скрещиваний соматических клеток человека с соматическими клетками млекопитающих, характерно то, что преимущественно теряются человеческие хромосомы. Следовательно, наблюдение одновременной потери той или иной хромосомы и признака указывают на локализацию гена, контролирующего признак в данной хромосоме. В исходных скрещиваниях можно использовать также клетки человека с частично удаленными из них хромосомами. Метод имеет ограничения, определяемые невозможностью экспрессии чужеродных генов в гибридах.

Перенос хромосом — это метод, позволяющий выделение хромосом и трансформацию ими клеток.

Перенос ДНК — это метод трансформации клеток очищенной ДНК, позволяющий переносить одновременно около 50 генов.

6. Молекулярно-генетические методы. Эти методы связаны с выделением ДНК, рестрикционным картированием, клонированием сегментов длиной до 50 000 пар оснований и секвенированием отдель-

ных генов. Надежно вошли в практику методы выделения кДНК и полимеразная цепная реакция (ПЦР).

Кроме того, ряд молекулярно-генетических методов направлен на разделение, идентификацию и измерение генных продуктов (белков). Подсчитано, что в клетках человека синтезируется около 30 000 разных белков. Поэтому ставится задача создать каталог белков и построить карту белков человека.

7. Моделирование наследственных болезней. Этот метод основан на законе Н.И. Вавилова о сходных рядах наследственности и заклю- чается в моделировании наследственных болезней на животных, у которых встречаются отдельные из этих болезней, например гемофилии на собаках. Кроме того, используют «сконструированные» линии лабораторных животных, обладающих теми или иными мутантными генами. Например, для изучения болезни Леша-Найяна используют белых мышей, полученных введением в их эмбрионы культивируемых клеток с дефектом по гипоксантин-фосфорибозилтрансферазе.

На основе результатов изучения наследственности человека создают генетические, молекулярные и белковые карты. В ходе реализации проекта «Геном человека» (1990-2003) был расшифрован весь геном человека.

Оцените статью
yamedik
Добавить комментарий