ПРОМЫШЛЕННАЯ ТОКСИКОЛОГИЯ ПРОМЫШЛЕННАЯ ТОКСИКОЛОГИЯ

ПРОМЫШЛЕННАЯ ТОКСИКОЛОГИЯ

Промышленная токсикология (токсикология труда) - это раздел гигиены труда, который связан с общей токсикологией и изучает действие на организм вредных химических веществ, встречающихся в производственных условиях.

Вредные вещества, действующие на работающих в промышленности, сельском хозяйстве, транспорте и других отраслях, следует рассматривать как профессиональные или производственные яды. К ним относятся химические вещества, которые в виде сырья, промежуточных или готовых продуктов используются в условиях производства и при поступлении в организм вызывают в нем патологические изменения. Производственные яды могут приводить как к выраженным профессиональным заболеваниям, так и к временно компенсированным нарушениям, повышению общей неспецифической заболеваемости и снижению резистентности организма к влиянию факторов окружающей среды.

Гигиеническая стандартизация сырья, промежуточных продуктов и готовых изделий направлена на ограничение в них токсичных примесей до уровней, не оказывающих неблагоприятного воздействия на организм. Эти исследования в настоящее время стали обязательными, поскольку любая производимая продукция должна иметь гигиенический сертификат качества. Ответственность за осуществление стандартизации возлагается на предприятие-изготовитель.

В связи с многообразием химических соединений, встречающихся в условиях производства, до настоящего времени нет единой полной и универсальной классификации промышленных ядов. В зависи-

мости от целей, стоящих перед исследователями, производственные химические факторы классифицируют по различным принципам. Так, химическая классификация делит все промышленные яды на органические, неорганические и элементорганические.

В соответствии с классификацией Геддерсона и Хаггарда химические вещества по биологическому действию на организм делят на 4 большие группы: удушающие, раздражающие, летучие наркотики и родственные им вещества, действующие после поступления их в кровь, и неорганические и металлоорганические соединения (цитоплазматические яды).

По этому же принципу другая классификация делит промышленные яды на вещества преимущественно общетоксического, раздражающего, сенсибилизирующего, канцерогенного, мутагенного действия.

С учетом различных путей поступления в организм предложено классифицировать химические токсиканты на вещества ингаляционного, перорального и перкутанного действия.

Наконец, по таким важнейшим свойствам, как токсичность и опасность, профессиональные яды делятся на чрезвычайно токсичные, высокотоксичные, умеренно токсичные, малотоксичные и чрезвычайно опасные, высокоопасные, умеренно опасные и малоопасные.

Интенсивность токсического действия химических веществ в значительной степени зависит от их агрегатного состояния и путей поступления в организм. Производственные яды могут быть в виде газов, паров, жидкостей, аэрозолей, твердых веществ, а также в виде смесей и поступать в организм через органы дыхания, желудочнокишечный тракт, неповрежденную кожу, а в отдельных случаях - через слизистую оболочку глаз.

Наиболее интенсивное поступление токсичных веществ в виде газов, паров, аэрозолей и газопароаэрозольных смесей происходит через дыхательные пути, что обусловлено большим объемом воздуха, проходящего через легкие, особенно при физических нагрузках, значительной общей поверхностью альвеол (более 100 м2) и постоянным обильным кровотоком в легочных капиллярах. В таких условиях яды легко и быстро проникают в кровь и распространяются по всему организму. Одни вещества поступают в кровь в неизмененном виде, например большинство органических растворителей, пары углеводородов жирного и ароматического ряда, а яды другой группы превращаются в альвеолах в новые соединения, затем проникают в кровь и распространяются по организму.

Вторым по значению является пероральный путь поступления токсичных агентов. Механизм проникновения в органы пищеварения ядов, находящихся в воздухе, обусловлен их растворением в слюне и всасыванием уже в ротовой полости или в желудке и кишечнике. Возможно также поступление промышленных ядов в пищеварительный тракт и при нарушении гигиенических условий труда и отдыха, при проглатывании с пищей и питьевой водой.

Особое внимание в производственных условиях следует уделять химическим веществам, легко проникающим через неповрежденную кожу. Такие яды хорошо растворяются в жирах, что позволяет им свободно мигрировать через эпидермис, а одновременно достаточная растворимость в воде способствует дальнейшему транспорту указанных соединений через кровь. Наибольшую опасность из профессиональных ядов, проникающих через кожу, представляют бензол и его производные, фосфорорганические пестициды, ароматические нитросоединения, хлорированные и металлоорганические вещества.

Сразу после поступления большинство ядов-неэлектролитов распространяется с кровью по всему организму и накапливается в органах и тканях в количествах, соответствующих их кровоснабжению. В дальнейшем происходит перераспределение токсичных веществ в зависимости от сорбционных способностей отдельных органов и тканей. Так, липотропные вещества, хорошо растворяясь в жирах, накапливаются в нервных клетках, костном мозге, яичках, подкожной жировой клетчатке. Цинк, хром, марганец депонируются в основном в печени и почках. Соединения свинца, урана, радия, бария, связываясь с фосфором и кальцием, аккумулируются в костях.

По преобладающему действию все промышленные яды можно условно разделить на соединения преимущественно нейротоксического, гематотоксического, гепатотоксического, нефротоксического действия, а также на вещества, поражающие органы дыхания.

К нейротоксическим следует отнести многие углеводороды, фосфорорганические соединения, тетраэтилсвинец, сероуглерод, мышьяковистые соединения, а также ртуть и марганец. Патогенез интоксикации каждым из этих ядов имеет свои особенности, но конечным результатом их действия на организм становятся нарушения психики и поражения центральной, периферической и вегетативной нервной системы.

Токсические поражения крови и кроветворных органов в зависимости от воздействующего фактора делятся на неспецифические

и специфические. Неспецифические изменения в крови вызывает большинство промышленных ядов. Чаще всего они обусловлены общетоксическим действием и проявляются в снижении количества гемоглобина и эритроцитов, нейтрофильном лейкоцитозе, моноцитозе, лимфопении и эозинопении.

Специфические реакции крови связаны с поступлением конкретного токсичного агента, оказывающего направленное действие на кровь и кроветворную систему.

Преимущественное поражение печени вызывают так называемые гепатотропные яды. К ним относятся хлорированные и бромированные углеводороды, нитропроизводные бензола, эфиры азотной кислоты, стирол и его производные, соединения фосфора и селена, сурьма, мышьяк и др. Острое поражение печени проявляется болью в правом подреберье в сочетании с диспепсическими и вегетативными нарушениями, хроническое сопровождается сначала нарушением экскреторной функции, а на поздней стадии - стойкой билирубинемией и диспротеинемией.

Поражение паренхимы почек по типу токсического нефроза с почечной недостаточностью могут вызывать хлорированные углеводороды, тяжелые металлы, сулема, мышьяк, этиленгликоль, скипидар, фосфорорганические соединения, чаще при остром воздействии. Такие ароматические аминосоединения, как бензидин, дианизидин, нафтиламин, а также анилин при хроническом воздействии приводят к доброкачественным опухолям, а впоследствии к раку мочевого пузыря.

Преимущественное поражение органов дыхания при хроническом воздействии вызывают раздражающие газы и пары, а также производственная пыль. Чем хуже вещества растворяются в воде или чем выше дисперсность пыли, тем более глубокие отделы дыхательной системы они поражают. Так, хорошо растворимые хлор, аммиак, сернистый ангидрид и крупнодисперсная пыль чаще вызывают риниты, ларингиты, трахеиты, бронхиты, т.е. затрагивают в основном верхние и средние отделы органов дыхания. Менее растворимые в воде окислы азота, фосген, марганец и мелкодисперсные аэрозоли могут вызвать бронхиолиты и даже токсический отек легких. При хронических поражениях органов дыхания накопление эффекта ядов может привести к токсическому пневмосклерозу.

Наряду с перечисленными эффектами некоторые промышленные яды могут избирательно поражать сердечно-сосудистую систему

(например, капилляротоксическое действие мышьяка, гипертензивное влияние свинца и др.), органы пищеварения (разрушение зубов ангидридами неорганических кислот, соединениями фтора и фосфора; поражение слизистой оболочки кишечника солями тяжелых металлов; диарея при отравлении ртутью, мышьяком, сурьмой и др.), эндокринную систему (хлорфеноксиуксусная кислота поражает поджелудочную железу, цианиды - паренхиму щитовидной железы и др.), костную систему (отравления соединениями фтора, бария, бериллия).

Отдельные группы промышленных ядов дают аллергенный, тератогенный, мутагенный, эмбриотропный, гонадотоксический, бластомогенный и другие специфические эффекты.

Наконец, производственные яды оказывают, как правило, политропное действие на организм, т.е. один и тот же токсический агент может поражать различные органы и системы. Например, свинец оказывает токсическое действие практически на все органы и системы, хотя наиболее тяжелые нарушения выявляются в нервной и сердечно-сосудистой системах, в системе крови, печени и кишечнике. Депонирование свинца осуществляется в основном в костях.

Особое место занимает процесс выведения токсичных веществ из организма. Выведение химических веществ из организма возможно через легкие, желудочно-кишечный тракт, почки, а также с потом, слюной и женским молоком. Химические вещества могут эвакуироваться как в неизмененном состоянии, так и в виде метаболитов. Скорость выведения токсичных агентов зависит от многих факторов и в первую очередь от летучести, растворимости в воде и жирах, химической структуры, особенностей депонирования и кумулятивных свойств. Особо неблагоприятные последствия может иметь выделение ядов с женским молоком, поскольку у ребенка 1-го года жизни еще нет достаточной резистентности даже к низким уровням токсических воздействий. С женским молоком могут выделяться хлорированные углеводороды, альдегиды, ртуть, мышьяк и многие другие яды. В связи с этим кормящие матери не должны допускаться к работе с токсичными веществами.

Действие промышленных ядов на организм имеет не только качественные особенности, но и определенные количественные показатели. Показатели токсикометрии используются в промышленной токсикологии для сравнительной оценки токсичности и опасности химических факторов производственной среды.

Наиболее важными исходными для первичной токсикологической оценки химических веществ являются такие показатели при дейс-

твии на животных, как среднесмертельная доза (DL50) - это доза, которая при однократном введении каждому животному в группе вызывает гибель 50% животных, и среднесмертельная концентрация (CL50) - концентрация вещества, которая вызывает гибель 50% животных при остром ингаляционном воздействии.

Однако показатели острого смертельного отравления являются достаточно грубыми и лишь ориентировочными. Большую роль в определении чувствительности к промышленным ядам организма как системы играет порог вредного действия. Пороговыми называются такие наименьшие концентрации химических веществ, которые вызывают минимальные, иногда временно компенсированные, изменения биологических показателей организма. При однократном остром воздействии определяется порог острого действия (Lim ac.), а при длительном повторном действии - порог хронического действия (Lim ch.).

При оценке опасности химических веществ важное значение придается кумуляции. Различают материальную кумуляцию, при которой в организме происходит накопление самого вещества, и функциональную, обусловленную накоплением эффекта. Показателем кумулятивных свойств токсичного агента служит коэффициент кумуляции - К кум., показывающий, во сколько раз доза вещества, вызывающая 50% гибель животных при дробном длительном воздействии, превышает ту же дозу при однократном введении.

Выраженность кумулятивных свойств промышленных ядов может существенно различаться. Так, при К кум. = 1 эффект оценивается как сверхкумуляция, при К кум. = 1-2,2 - как выраженная кумуляция, при К кум. = 2,2-5 - как средняя кумуляция и при К кум. более 5 - как слабая кумуляция. Естественно, что чем меньше К кум., а следовательно, чем более выражены кумулятивные свойства вещества, тем больше потенциальная опасность развития хронического отравления.

Гигиеническая характеристика основных производственных факторов

Органические растворители - это легколетучие жидкости, применяемые в промышленности для растворения низкомолекулярных и полимерных соединений, приготовления клеев, лаков и красок, обезжиривания поверхностей, экстракции жиров.

Опасность профессионального отравления, особенно острого, в значительной мере определяется летучестью (скоростью испарения)

растворителей, так как даже не очень токсичные, но легколетучие соединения, испаряясь, быстро насыщают воздух рабочей зоны.

По скорости испарения все органические растворители делят на 3 группы:

•  легколетучие - этиловый эфир, бензин, сероуглерод, бензол, толуол, дихлорэтан, хлороформ, эфиры уксусной кислоты, метиловый спирт и др.;

•  среднелетучие - ксилол, хлорбензол, бутиловый спирт и др.;

•  малолетучие - нитропарафины, этиленгликоль, тетралин, декалин и др.

Высокая растворимость органических веществ в жирах способствует их проникновению через неповрежденную кожу, поэтому многие органические растворители оказывают кожно-резорбтивное действие. Жирорастворимые соединения также легко поступают в клетки центральной нервной системы и имеют наркотические свойства. К таким органическим растворителям относятся, например, бензол и его хлорзамещенные гомологи (хлорбензол, дихлорбензол и т.п.), сероуглерод, четыреххлористый углерод, дихлорэтан, трихлорэтилен и др.

Токсичные газообразные вещества

Окись углерода (оксид углерода, угарный газ), CO - газ без цвета и запаха. Окись углерода может образовываться при неполном сгорании материалов, содержащих углерод, и является составной частью многих газообразных отходов производства (генераторных, выхлопных, взрывных и пр.).

Для предупреждения загрязнения воздушной среды окисью углерода необходима герметизация оборудования, коммуникаций. Следует предупреждать образование и выделение окиси углерода в воздух рабочих помещений, систематически проводить контроль воздушной среды. Помещения, в которых возможно образование окиси углерода, должны иметь автоматическую сигнализацию о присутствии в воздухе угрожающих концентраций газа. Необходимо обеспечить также достаточную эффективность общеобменной и местной вытяжной вентиляции.

Сернистый газ (сернистый ангидрид), SO2 - бесцветный газ с резким удушающим запахом, хорошо растворяется в воде, образуя сернистую и серную кислоты. Относится к раздражающим газам. Сернистый газ - основное сырье в производстве серной кислоты, применяется при получении сульфита натрия, в рефрижераторах, при отбеливании волокон и тканей, консервировании и дезинфекции

фруктов; выделяется в больших количествах при сжигании многосернистого топлива, на медеплавильных заводах, при производстве сложных минеральных удобрений. Возможны хронические и острые отравления. Сернистый газ поступает в организм через дыхательные пути, около 40% задерживается (резорбируется) в них, примерно 60% - в организме в целом. Сернистый газ обнаруживается в крови, в моче увеличивается количество неорганических фракций серы. К действию сернистого газа возможно привыкание. Обнаружена зависимость частоты острых респираторных заболеваний от степени загрязнения воздушной среды сернистым газом.

Сернистый газ оказывает раздражающее действие на слизистые оболочки глаз и верхних дыхательных путей, при воздействии больших концентраций поражает легкие. Оказывает резорбтивное действие, нарушая обменные процессы.

При хронической интоксикации развиваются атрофические процессы в слизистой оболочке верхних дыхательных путей, риниты, часто обостряющиеся бронхиты (возможно, с астматическим компонентом), евстахииты, конъюнктивиты, разрушаются зубы, изменяется морфологический состав крови (чаще бывают анемии), снижается количество нейтрофилов, нарушается углеводный и белковый обмен. Отмечают угнетение окислительных процессов в головном мозге, печени, селезенке, мышцах, у женщин - нарушение менструального цикла.

К основным мерам профилактики относятся герметизация производственных процессов и оборудования, а также эффективно действующая вентиляция.

Окислы азота (нитрогазы) представляют собой непостоянную смесь окиси азота NO, двуокиси азота NO2 и азотистого ангидрида N2O3. Цвет смеси - обычно от светло-желтого до темно-бурого. Окись азота нестойка и при контакте с воздухом превращается в двуокись азота - основной действующий компонент смеси.

Окислы азота могут воздействовать на работающих в производстве азотной кислоты, минеральных азотистых удобрений, во время взрывных работ, электросварки, испытании высоковольтной аппаратуры, при работе в рентгеновских кабинетах.

В организм окислы азота поступают через дыхательные пути, симптомы интоксикации проявляются после небольшого латентного периода. При высоких концентрациях окислов азота развивается картина острого отравления, которое имеет разные формы в зави-

симости от того, какие окислы содержатся в смеси. При преобладании двуокиси азота после периода мнимого благополучия может развиться тяжелый токсический отек легких, часто заканчивающийся смертью, окись азота вызывает образование метгемоглобина с явлениями асфиксии. При больших концентрациях смеси этих окислов наблюдается шокоподобная форма интоксикации с удушьем, судорогами, остановкой дыхания, что может привести к летальному исходу. Возможны сочетание указанных симптомов, а также развитие острой интоксикации по сердечно-сосудистому типу (стенокардические боли в области сердца, признаки ишемической болезни).

При длительном воздействии небольших концентраций возникает хроническое отравление - ринит, фарингит, ларингит, бронхит, разрушение зубов, обострение хронических легочных заболеваний, токсический пневмосклероз. Возможны миокардиты, гастриты, колиты, токсический гепатит. Не исключаются отдаленные последствия в виде канцерогенеза, обусловленные образованием в организме нитрозаминов.

Профилактика отравления заключается в регламентации контакта с нитрогазами, соблюдении их ПДК в воздухе рабочей зоны, герметизации производственных процессов, эффективной вентиляции, применении в отдельных случаях респираторов, проведении лечебнопрофилактических мероприятий.

Металлы и их соединения

Свинец (Pb) - тяжелый металл серого цвета, мягкий и пластичный. Температура плавления 327 °С, начинает испаряться при 400-500 °С, кипит при 1740 °С.

Интоксикации свинцом и его соединениями могут встречаться при добыче свинца, выплавке свинца из руд, в производстве свинцовых красок, аккумуляторов, в полиграфическом и кабельном производствах, закалке металлических изделий в свинцовых ваннах, пайке, газорезке металлических частей, окрашенных свинцовыми красками. Возможны бытовые отравления при употреблении в пищу продуктов, особенно кислых (брусничное, клюквенное варенье), длительно хранившихся в глиняной посуде, покрытой свинецсодержащей глазурью, при употреблении питьевой воды, проходящей через покрытые изнутри свинцом трубы.

Свинец - протоплазматический яд широкого спектра действия, вызывает изменения в нервной и сердечно-сосудистой системах,

крови, нарушает ферментативные процессы, витаминный обмен. Повышение содержания свинца в тканях нарушает баланс других микроэлементов в организме. Для хронической интоксикации характерны свинцовая кайма - темно-серая полоска по краю десен, преимущественно у передних зубов, свинцовый колорит кожи - землисто-серый цвет лица с легкой желтушностью; повышенное содержание в крови ретикулоцитов (эритроциты с тельцами Гейнца) и базофильно-зернистых эритроцитов (рис. 11.1, 11.2); повышенное содержание порфиринов в моче. Свинцовые отравления могут проявляться в виде носительства (свинцовая кайма без симптомов, указывающих на отравление), легкого отравления, сопровождающегося отдельными признаками интоксикации (ретикулоцитоз, увеличение количества эритроцитов с базофильной зернистостью, повышенное содержание порфирина в моче без заметного снижения уровня гемоглобина), легкого астеновегетативного синдрома.

Рис. 11.1. Картина крови при свинцовой анемии

Рис. 11.2. Эритроциты с тельцами Гейнца и ретикулоциты в периферической крови

У работников, контактирующих со свинцом, большое внимание уделяется профилактическим мероприятиям. К такой работе не допускаются женщины и подростки. На предприятиях предусматриваются герметизация аппаратуры, механизация, устранение ручных операций, общая и местная вентиляция. Необходимо использовать средства индивидуальной защиты, устраивать санитарно-бытовые помещения по типу санпропускников. Имеют значение соблюдение правил личной гигиены, санация полости рта. Работающие должны есть только в специально выделенных помещениях, перед приемом пищи и курением обязательно мыть руки 1-20% раствором хлористоводородной (или уксусной) кислоты, а затем водой с мылом.

Немаловажным фактором в профилактике интоксикации является и лечебно-профилактическое питание.

Особое значение имеют предварительные и периодические медицинские осмотры. К работе со свинцом не допускают лиц с болезнями

крови, периферической нервной системы, гипертонической болезнью и др. В периодических медицинских осмотрах участвуют цеховой терапевт, невропатолог, офтальмолог (по показаниям). Обязательно определяют содержание свинца в моче, делают клинический анализ крови (гемоглобин, эритроциты, лейкоциты, ретикулоциты, базофильная зернистость эритроцитов, СОЭ, гематопорфирин по показаниям). Работающих в контакте со свинцом направляют в профилактории, на санаторно-курортное лечение. Применяют соли этилендиаминтетрауксусной кислоты (ЭДТА), витаминотерапию (витамины С, группы В), физиотерапию, хвойные ванны. Гарантируется выдача больничного листа сроком на 2 мес с последующим присоединением дней нетрудоспособности к отпуску.

Ртуть (Hg) - тяжелый металл серебристо-белого цвета, жидкий при комнатной температуре, испаряющийся уже при 0 °С. Температура плавления - 38,8 °С, кипения - 357,25 °С.

Наряду с жидкой ртутью используются ее соединения - сулема HgCl2, цианид ртути Hg(CN)2, роданид ртути Hg(SCN)2 и др.

Ртуть применяется при производстве лекарственных препаратов (ртутные мази, присыпки), пестицидов, взрывчатых веществ (гремучая ртуть), приборов (термометры, манометры, рентгеновские трубки, ртутно-кварцевые и электрические лампы), в стоматологии (ртутная амальгама) и т.д.

Интоксикации возможны при получении металлической ртути и ее соединений, обработке и применении ртутьсодержащих веществ. Пары ртути поглощаются деревом, штукатуркой. Сорбированная ртуть способна выделяться в воздух. Скопления ртути под полом, в плинтусах легко испаряются, загрязняя воздух помещений.

Ртуть поступает в организм через легкие, отчасти через желудочно-кишечный тракт, может проникать через неповрежденную кожу. Циркулирует в крови в виде альбумината, депонируется в паренхиматозных органах, легких, мозге, костях. Выводится из организма почками, слюнными и молочными железами.

Ртуть - это тиоловый яд, блокирующий сульфгидрильные группы белковых соединений и этим нарушающий белковый обмен и ферментативные процессы. Поражает преимущественно нервную и выделительную системы.

Острая интоксикация в производственных условиях наблюдается редко, заглатывание металлической ртути особой опасности не представляет. Возможны бытовые отравления.

При хронической интоксикации поражается в основном нервная система, выражены вегетативные нарушения - наклонность к тахикардии, артериальной гипертензии, астении, вегетодистонии («ртутный эритизм»). Наиболее типичный симптом - мелкий тремор пальцев вытянутых рук, приподнятых ног, век, языка. Отмечаются повышенная эмоциональная возбудимость, иногда неуверенность в себе, застенчивость, снижение умственной работоспособности, внимания, металлический вкус во рту, усиленное слюноотделение, пародонтоз, кровоточивость десен, гингивит, энтероколит (в тяжелых случаях - геморрагический).

Обязательно пройдите медицинский осмотр или обследование, если планируете работать на предприятии, где вероятен контакт с ртутью. Противопоказаниями к приему на работу являются заболевания нервной системы, невротические состояния различной этиологии, заболевания желудочно-кишечного тракта, почек, выраженные эндокринно-вегетативные расстройства. Не допускаются к работе с ртутью беременные, а также кормящие грудью женщины. В состав врачебной комиссии при предварительных и периодических медицинских осмотрах входят терапевт, невропатолог, стоматолог. Других специалистов привлекают по мере необходимости.

Марганец (Mn) - твердый хрупкий металл темно-серого цвета с красноватым отливом. В производственных условиях применяется в виде окислов (MnO2, MnO, Mn2O5), а также соединений с металлами.

Отравления марганцем возможны в производстве легированных сталей, при добыче и переработке марганцевых руд, электросварке электродами с марганцевой обмазкой, в производстве стекла и др.

В организм марганец поступает в основном ингаляционным путем в виде пыли, а также через желудочно-кишечный тракт. Он образует малорастворимые фосфаты, которые могут откладываться в костях, печени, почках.

Марганец вызывает хроническое отравление, которое в первую очередь касается функций ЦНС. На начальных стадиях наблюдаются повышенная утомляемость, сонливость, ослабление памяти, затем нарастают симптомы токсической энцефалопатии, нарушаются походка, речь, появляется амимия. На последней стадии заболевания наступает полная инвалидность вследствие необратимых изменений ЦНС. Развивается паркинсонизм с выраженной маскообразностью лица, скованностью движений, мышечной ригидностью, наруше-

нием походки и речи, эмоциональной лабильностью. Параллельно нарушаются функции других органов.

Профилактика марганцевой интоксикации предусматривает все мероприятия, направленные на уменьшение пылеобразования; большое значение придается соблюдению мер личной гигиены. Установлены ПДК для соединений марганца в воздухе рабочей зоны. Периодические медицинские осмотры проводятся 1 раз в 6 или 12 мес в зависимости от класса работ.

Хром (Cr) - твердый блестящий металл. Встречается в виде окислов и соединений с другими химическими элементами.

Отравления хромом и его соединениями чаще происходят в металлургической промышленности, где он применяется в качестве легирующей добавки к стали, в производстве огнеупоров, а также в химической, кожевенной, текстильной, лакокрасочной промышленности.

Хром может поступать в организм через дыхательные пути, желудочно-кишечный тракт и кожу, при этом он раздражает слизистые оболочки, вызывая насморк, чиханье. При воздействии больших концентраций соединений хрома возможны прободение хрящей носовой перегородки, изъязвление слизистой оболочки полости рта и гортани. Общетоксическое действие хрома проявляется нарушениями функции желудочно-кишечного тракта, образованием на коже болезненных, плохо заживающих язв, гнойничков и экземы. Хром является аллергеном и вызывает заболевание, сходное с бронхиальной астмой, сенсибилизируя организм. Приступы бронхиальной астмы сопровождаются отеком лица, туловища, удушьем, кашлем, повышением температуры. У лиц, работающих с хромом, чаще, чем у остального населения, встречается рак органов дыхания, так как хром, особенно шестивалентный, является канцерогеном. При воздействии высоких концентраций тумана хромовой кислоты возможно отравление с одышкой, кашлем, затруднением дыхания, значительным цианозом и появлением влажных хрипов в легких.

Меры профилактики профзаболевания разнообразны: при выявлении аллергических реакций обязателен перевод на другую работу, при появлении язв и дерматитов - временный перевод на другую работу. При содержании хрома в воздухе рабочей зоны выше допустимого работа возможна только в респираторах типа IIIБ-1 и изолирующих шланговых противогазах. Перед началом работы носовые ходы смазывают рыбьим жиром или вазелином с витамином А. Для защиты рук их смазывают перед работой профилактическими мазями, после рабо-

ты моют 5% раствором гипосульфита или 10% раствором бисульфата натрия. Проводятся профилактические медицинские осмотры.

Бериллий (Be) - твердый металл светло-серого цвета, встречается как в чистом виде, так и в виде соединений (окись, сульфаты, хлориды, фториды и др.). Токсичны как металл, так и его соединения. Интоксикации могут возникать у рабочих на участках извлечения, обработки бериллия и его соединений, в ядерной технике и ракетостроении, в производстве керамики и огнеупоров, радиоламп и люминофоров, в порошковой металлургии, при плавке и сварке содержащих бериллий сплавов.

Бериллий поступает в организм через легкие в виде дыма и паров. Депонируется в легких, костях, печени, почках, селезенке. Выводится главным образом через кишечник и почки. Проникает через плаценту, обнаруживается в моче новорожденных. Бериллий определяется в моче через несколько лет (до 10 лет) после прекращения контакта с его соединениями.

Бериллий и его соединения оказывают токсическое, сенсибилизирующее и канцерогенное действие. Они вызывают острые интоксикации, дерматиты, кожные гранулемы, токсические бронхиты, хронический бериллиоз.

При поступлении на работу проводится тщательный инструктаж по технике безопасности. Работа с бериллием и его соединениями требует обязательной механизации производственных процессов, герметичности оборудования, дистанционного управления, специальных кабин. Предусматривается вентиляция для удаления аэрозолей бериллия в месте их образования (желательна вентиляция, встроенная в технологическое оборудование). Необходимо проводить постоянный контроль за загрязненностью бериллием воздуха производственных помещений, поверхностей оборудования, одежды, кожи рук.

Индивидуальная профилактика предусматривает применение спецодежды, респиратора ШБ-1 («Лепесток»), пневмокостюма (в случае необходимости), резиновых или хлорвиниловых перчаток, раздельное хранение повседневного платья и спецодежды. Обязательно мытье в душе после работы. Стирка спецодежды должна быть механизирована и проводиться в специализированных прачечных. Необходимо отдельное помещение для приема пищи.

Рабочие, контактирующие с бериллием и его соединениями, должны проходить предварительные и периодические медицинские осмотры, их направляют в профилакторий и на санаторно-курортное

лечение, им назначают лечебно-профилактическое питание. К работе с бериллием не допускают беременных и кормящих женщин.

Производственная пыль

Производственная пыль (аэрозоль) - это совокупность мельчайших твердых частиц, образующихся в процессе производства, находящихся во взвешенном состоянии в воздухе рабочей зоны и оказывающих неблагоприятное воздействие на организм работающих.

В зависимости от принципа оценки существует несколько классификаций производственной пыли.

По происхождению пыль подразделяется на органическую (растительную, животную, полимерную), неорганическую (минеральную, металлическую) и смешанную.

По месту образования пыль делится на аэрозоли дезинтеграции, образующиеся при размоле и обработке твердых тел, и аэрозоли конденсации, получающиеся в результате конденсации паров металлов и неметаллов (шлаки).

По дисперсности пыль делят на видимую (частицы более 10 мкм), микроскопическую (от 0,25 до 10 мкм) и ультрамикроскопическую (менее 0,25 мкм).

Большое значение имеет характер действия пыли на организм, поэтому пыль может быть преимущественно токсической (марганцевая, свинцовая, мышьяковистая и др.), раздражающей (известковая, щелочная и др.), инфекционной (микроорганизмы, споры и др.), аллергической (шерстяная, синтетическая и др.), канцерогенной (сажа и др.) и пневмокониотической, вызывающей специфический фиброз легочной ткани.

Опасность производственной пыли определяется ее физико-химическими свойствами. Так, пылинки размером менее 0,25 мкм практически не осаждаются и постоянно находятся в воздухе в броуновском движении. Пыль с частицами менее 5 мкм наиболее опасна, поскольку может проникать в глубокие отделы легких, вплоть до альвеол, и задерживаться там. Подсчитано, что альвеол достигает около 10% вдыхаемых пылинок, а 15% заглатывается со слюной.

Ученые указывают на значение заряда пыли. Считается, что заряженные частицы в 2-8 раз более активно задерживаются в дыхательных путях и интенсивнее фагоцитируются. Кроме того, одноименно заряженные частицы дольше находятся в воздухе рабочей зоны, чем разноименно заряженные, которые быстрее агломерируются и оседают.

Скорость осаждения пыли зависит также от формы и пористости частиц. Округлые плотные частицы оседают быстрее. Плотные, крупные частицы с острыми гранями (чаще аэрозоли дезинтеграции) больше травмируют слизистую оболочку дыхательных путей, чем частицы с гладкой поверхностью. Однако легкие пористые частицы хорошо адсорбируют токсичные пары и газы, а также микроорганизмы и продукты их жизнедеятельности. Такая пыль приобретает токсические, аллергенные и инфекционные свойства.

Производственная пыль служит причиной развития различных заболеваний. Прежде всего это заболевания кожи и слизистых оболочек (гнойничковые заболевания кожи, дерматиты, конъюнктивиты, др.), неспецифические заболевания органов дыхания (риниты, фарингиты, пылевые бронхиты, пневмонии), заболевания кожи и органов дыхания аллергической природы (аллергические дерматиты, экземы, астмоидные бронхиты, бронхиальная астма), профессиональные отравления (от воздействия токсичной пыли), онкологические заболевания (от воздействия канцерогенной пыли, например сажи, асбеста), пневмокониозы (от воздействия фиброгенной пыли). Последняя группа заболеваний представляет наибольший интерес, так как профессиональные пневмокониозы занимают первое место среди профпатологии во всем мире.

К хроническому профессиональному фиброзу легких или пневмокониозу может привести длительное вдыхание производственной пыли. Пневмокониозами называются заболевания легких от воздействия промышленной пыли, проявляющиеся хроническим диффузным пневмонитом с развитием фиброза легких.

Пылевой фиброз, вызванный вдыханием пыли свободной двуокиси кремния, называется силикозом, вдыханием двуокиси кремния в связанном состоянии (солями кремниевой кислоты - силикатами) - силикатозом, угольной пыли - антракозом, пыли асбеста - асбестозом и т.д.

Пневмокониоз развивается у рабочих, занятых на подземных работах, обогатительных фабриках, в металлообрабатывающей промышленности (обрубщики, формовщики, электросварщики), рабочих асбестодобывающих предприятий и др. Пневмокониоз является общим заболеванием и возникает через 1 год - 10 лет работы в условиях высокой запыленности. Это зависит от степени запыленности, агрессивности пыли, ее дисперсности, индивидуальной реактивности и др. Тяжелая физическая работа, частые охлаждения, одновременное

воздействие раздражающих газов и токсичных веществ способствуют более быстрому развитию пневмокониоза. Одновременно отмечаются нарушения нервной, сердечно-сосудистой и лимфатической систем.

Мероприятия по профилактике пневмокониозов должны быть направлены на ликвидацию причин образования и распространения пыли, т.е. на изменение технологического процесса, использование мер личной профилактики.

Большое значение в профилактике пневмокониозов имеет проведение предварительных (при поступлении на работу) и периодических (во время работы) медицинских осмотров. Целесообразны ингаляции, облучение ультрафиолетовыми лучами в субэритемной дозе, использование средств индивидуальной защиты, в частности противопылевых респираторов.

Вторичная профилактика у больных на ранних стадиях пневмокониоза или в состоянии предболезни состоит в исключении воздействия пыли, токсичных, раздражающих и аллергизирующих веществ, неблагоприятных метеорологических условий, больших физических нагрузок.

Механические колебания

К вредным факторам производственной среды, обусловленным механическими колебательными движениями, относятся шум, ультразвук, инфразвук и вибрация. Широкое применение в различных отраслях народного хозяйства мощных источников звука, а также машин и оборудования, генерирующих вибрацию, в значительной степени определило влияние механических колебаний на здоровье человека, развитие профессиональной патологии.

Производственный шум - это совокупность звуков различной интенсивности и высоты, беспорядочно изменяющихся во времени, возникающих в условиях производства и неблагоприятно воздействующих на организм.

При работе различного оборудования на промышленных предприятиях, при клепке, чеканке, работе на станках, на транспорте и т.п. возникают колебания, которые передаются воздушной среде и распространяются в ней. Звуковая волна распространяется от источников колебания в виде зон сгущения и разрежения воздуха. Механические колебания характеризуются амплитудой и частотой. Амплитуда определяется размахом колебаний, частота - числом полных колебаний в 1 с. Единицей измерения частоты является герц (Гц) - 1 колебание в секунду. Амплитуда колебаний определяет величину звукового давле-

ния. В связи с этим звуковая волна несет определенную механическую энергию, измеряемую в ваттах на 1 см2.

Частота колебаний определяет высоту звучания: чем больше частота колебаний, тем выше звук. Человек воспринимает лишь звуки, имеющие частоту от 20 до 20 000 Гц. Ниже 20 Гц находится область инфразвука, выше 20 000 Гц - ультразвука. Однако в реальной жизни, в том числе и в условиях производства, мы встречаемся со звуками частотой от 50 до 5000 Гц. Орган слуха человека реагирует не на абсолютный, а на относительный прирост частот: возрастание частоты колебаний вдвое воспринимается как повышение тона на определенную величину, называемую октавой. Таким образом, октава - диапазон частот, в которой верхняя граница частоты вдвое больше нижней. Весь диапазон частот разбит на октавы со среднегеометрическими частотами 16; 31,5; 63; 125; 250; 500; 1000; 2000; 4000; 8000 и 16 000 Гц. Практическая оценка шума проводится в диапазоне от 63 до 8000 Гц.

Распределение энергии по частотам шума представляет собой его спектральный состав. При гигиенической оценке шума измеряют как его интенсивность (силу), так и спектральный состав по частотам.

В связи с большой широтой воспринимаемых энергий для измерения интенсивности звуков или шума используют логарифмическую шкалу - так называемую шкалу Бел, или децибел (дБ). За исходную цифру 0 Бел принята пороговая для слуха величина энергии 10-16 Вт/см2 (порог слышимости или восприятия). При возрастании ее в 10 раз (т.е. до 10-15 Вт/см2) звук субъективно воспринимается как вдвое более громкий, и его интенсивность составляет 1 Бел, или 10 дБ. При возрастании интенсивности в 100 раз в сравнении с пороговой, т.е. до 10-14 Вт/см2, звук оказывается вдвое громче предыдущего, и его интенсивность равна 2 Бел, или 20 дБ, и т.д.

Весь диапазон громкостей, воспринимаемых как звук, укладывается в 140 дБ. Звуки, по громкости превышающие эту величину, вызывают у человека неприятные и болевые ощущения, поэтому громкость 140 дБ обозначается как болевой порог. Следовательно, при измерении интенсивности звуков пользуются не абсолютными величинами энергии или давления, а относительными, выражая отношение величины энергии или давления данного звука к величинам энергии или звукового давления, являющимися пороговыми для слуха.

С учетом рассмотренных физико-гигиенических характеристик производственный шум можно классифицировать по различным признакам.

По этиологии - аэродинамический, гидродинамический, металлический и т.д.

По частотной характеристике - низкочастотный (1-350 Гц), среднечастотный (350-800 Гц), высокочастотный (более 800 Гц).

По спектру - широкополосный (шум с непрерывным спектром шириной более 1 октавы), тональный (шум, в спектре которого имеются выраженные тоны). Широкополосный шум с одинаковой интенсивностью звуков по всем частотам условно обозначают как «белый».

По распределению энергии во времени - постоянный или стабильный, непостоянный. Непостоянный шум может быть колеблющимся, прерывистым и импульсным. Для 2 последних видов шума характерно резкое изменение звуковой энергии во времени (свистки, гудки, удары кузнечного молота, выстрелы и пр.).

В последние годы трудно найти отрасль промышленности, не создающую шума. Интенсивный шум возникает при штамповке, испытании моторов, работе отбойных молотков, прокатных станов, компрессорных установок, центрифуг, виброплощадок и т.д.

Влияние шума на организм весьма часто сочетается с другими производственными вредностями - неблагоприятными микроклиматическими условиями, токсичными веществами, ультразвуком, вибрацией.

Производственный шум вызывает профессиональную тугоухость, а иногда и глухоту. Чаще слух изменяется под действием высокочастотного шума. Однако и низко- и среднечастотный шум большой интенсивности также ведет к нарушению слуха. Механизм нарушения слуха заключается в развитии атрофических процессов в нервных окончаниях кортиева органа. Профессиональная потеря слуха развивается медленно и постепенно прогрессирует с возрастом и стажем.

Показательно, что в первое время у рабочих шумных профессий снижение слуха является адаптационным, временным. Однако постепенно в связи с атрофическими процессами в кортиевом органе снижается слух сначала на высокие частоты, а затем и на средние, и низкие (кохлеарный неврит). Рабочие шумных профессий в первые годы работы часто субъективно не ощущают нарушения слуха и лишь когда процесс становится разлитым, начинают жаловаться на снижение слуха. В связи с этим главным методом ранней диагностики нарушения слуховой чувствительности у рабочих шумных профессий является аудиометрия.

Еще одной профессиональной патологией органа слуха может быть звуковая травма. Она чаще обусловлена воздействием интенсив-

ного импульсного шума и заключается в механическом повреждении барабанной перепонки и среднего уха.

Наряду с воздействием на орган слуха происходит и общее воздействие шума на организм, в первую очередь на нервную и сердечно-сосудистую системы с преобладанием астеновегетативных нарушений. Отмечаются жалобы на головную боль, повышенную утомляемость, нарушение сна, снижение памяти, раздражительность, сердцебиение. Объективно наблюдаются удлинение латентного периода рефлексов, изменение дермографизма, лабильность пульса, повышение артериального давления и т.д. Отмечаются нарушения функции органов дыхания (угнетение дыхания), зрительного анализатора (снижение чувствительности роговицы, уменьшение времени ясного видения и критической частоты слияния мельканий, ухудшение цветового зрения), вестибулярного аппарата (головокружения и др.), желудочно-кишечного тракта (нарушение моторной и секреторной функций), системы крови, мышечной и эндокринной систем и т.д. Подобный симптомокомплекс, развивающийся в организме под действием производственного шума, обозначают как «шумовую болезнь» (Андреева-Галанина Е.Ц.).

Профилактика воздействия шума осуществляется в нескольких направлениях. На производстве необходимо соблюдать ПДУ шума и ограничивать время работы в шумных условиях (соблюдение допустимой дозы шума), заменять шумные технологические операции на бесшумные. Установка на оборудовании и конструкциях шумопоглощающих экранов и покрытий позволяет снизить уровень шума на 5-12 дБ. Предлагается вынесение шумных операций и производств в отдельные помещения или цеха. Наушники, вкладыши-«беруши», антифоны, шлемофоны снижают проникновение шума в ухо на 10-50 дБ.

Немаловажно рациональное сочетание труда и отдыха. Необходимы предварительные и периодические медицинские осмотры с привлечением терапевта и отоларинголога, а по показаниям - невропатолога. Обязательны аудиометрические исследования и контроль за артериальным давлением. К работе в шумных условиях не допускаются лица с заболеваниями органа слуха и нервной системы. По результатам периодических осмотров работающих направляют в профилактории и на санаторно-курортное лечение.

Ультразвук - механические колебания упругой среды, имеющие одинаковую со звуком физическую природу, но превышающие верх-

ний порог слышимости (свыше 20 000 Гц, или 20 кГц). Как и для звука, интенсивность ультразвука измеряется в ваттах на квадратный сантиметр, а по логарифмической шкале - в белах (децибелах).

Ультразвук широко используется в промышленности, сельском хозяйстве, медицине. Так, низкочастотный ультразвук (11-100 кГц) применяется для очистки деталей, котлов, стирки тканей, коагуляции взвешенных веществ в воздухе, обработки сверхтвердых материалов (например, алмазов), в сельском хозяйстве для борьбы с насекомыми, гусеницами, грызунами, в пищевой промышленности при замораживании сухого молока и эмульгировании жиров, в медицине для стерилизации инструментов. Высокочастотный ультразвук (100 кГц-1000 МГц) нашел применение в дефектоскопии, связи, в медицине применяется для диагностики (УЗИ), сращения костей, при операциях на глазу, для разрушения опухолей, а в физиотерапии - как болеутоляющее, общестимулирующее и снижающее артериальное давление средство.

Механизм повреждающего действия ультразвука на границе сред жидкость - газ основан на эффекте кавитации - образовании пузырьков газа и пара на границе сред, выделении энергии и разрушении тканей. В твердых средах разрушающее действие ультразвука обусловлено возникновением высокочастотной вибрации.

В производственных условиях возможно как контактное действие ультразвука, так и его влияние через воздух. При работе с инструментами преобладает контактное локальное действие ультразвука на руки. Патологические проявления заключаются в основном в развитии вегетативного полиневрита рук, парезе кистей и предплечий, фасцикулите рук. Однако как общие проявления возможны общецеребральные нарушения и вегетососудистая дисфункция.

При длительном воздействии ультразвука, распространяющегося через воздух, у работающих отмечаются нарушения деятельности нервной, сердечно-сосудистой и эндокринной систем, поражение слухового и вестибулярного анализаторов, гуморальные сдвиги и в первую очередь вегетодистония и астенический синдром. Работающие предъявляют жалобы на головную боль, расстройство сна, раздражительность, утомляемость, снижение слуха.

Низкие уровни ультразвука (80-90 дБ) оказывают стимулирующее действие на организм, в связи с чем используются как лечебное и профилактическое средство. Ультразвуковой массаж способствует

ускорению обменных процессов, стимулированию рецепторов, нормализации сосудистых реакций и расширению сосудов, снижению артериального давления.

Уровни ультразвука свыше 120 дБ оказывают выраженное повреждающее действие.

Профилактические мероприятия при работе с ультразвуковыми установками должны быть направлены на предупреждение контактного озвучивания через твердые и жидкие среды, на борьбу с распространением ультразвука в воздухе рабочей зоны и соблюдение гигиенических нормативов.

При работе необходимо использовать средства индивидуальной защиты, через каждые 1,5-2 ч работы с установками делать 15-минут- ный перерыв. Работающим с ультразвуком назначают массаж, водные процедуры, ультрафиолетовое облучение эритемно-загарного спектра, витаминопрофилактику (витамины С и группы В).

Необходим систематический контроль за состоянием здоровья работающих путем проведения периодических медицинских осмотров. При приеме на работу проводят предварительный осмотр.

Инфразвуком называются звуковые колебания и волны с частотами ниже слышимых (акустических) частот - 20 Гц.

Частотный диапазон инфразвука находится ниже порога слышимости, но в производственных условиях инфразвук, как правило, сопровождается низкочастотным шумом.

В производстве источниками инфразвука являются мощные крупногабаритные машины и механизмы, турбулентные потоки газов и жидкостей, вентиляционные системы и др. Инфразвук возникает в конверторных цехах, при работе портовых кранов, компрессорных станций, при испытании реактивных двигателей и на аэродромах при взлете самолетов. Инфразвук генерируют железнодорожные локомотивы и составы, тяжелый грузовой транспорт. В условиях производства часто встречаются уровни инфразвука, достигающие 110 дБ, что на 10 дБ превышает ПДУ.

В отличие от шумов звукового диапазона инфразвук обладает большой длиной волны, которая в результате дифракции легко обходит преграды, не задерживается экранами, проникает в помещения и почти не гасится с расстоянием. Слабое поглощение атмосферой способствует распространению инфразвука на многие километры. Кроме того, из-за резонансных частот инфразвук может вызывать вибрацию крупных объектов.

Биологическое действие инфразвука, превышающего 100 дБ, проявляется в нарушениях деятельности центральной нервной и сердечно-сосудистой систем, органов дыхания, вестибулярного аппарата. Одновременно у работающих выявляется снижение слуха, преимущественно на низких и средних частотах. Угнетающее действие инфразвука на психоэмоциональное состояние в конечном итоге ведет к снижению работоспособности и повышенной утомляемости рабочих.

Профилактика неблагоприятного действия инфразвука направлена прежде всего на соблюдение гигиенических нормативов на рабочих местах. Единственной радикальной мерой борьбы с инфразвуком является его гашение в источнике возникновения, поскольку защита экранами и поглощение на пути распространения малоэффективны. При гармонических инфразвуковых колебаниях предлагаются глушители интерферентного типа. Личная профилактика и лечебно-профилактические мероприятия аналогичны таковым при работе в условиях шума.

Производственная вибрация - это механические колебательные движения упругих тел в условиях производства, передающиеся непосредственно телу человека или отдельным его частям и оказывающие неблагоприятное воздействие на организм.

Вибрация по способу передачи человеку подразделяется на общую (вибрацию рабочих мест) и локальную. Общая вибрация передается через опорные поверхности тела и распространяется по всему организму. Локальная вибрация чаще передается через руки, реже - через другие ограниченные участки тела. Вибрация характеризуется частотой, т.е. числом колебаний в 1 с (герц), а ее энергетическую характеристику отражают виброскорость и виброускорение или их логарифмические уровни (децибел).

Гигиеническая оценка общей вибрации проводится в диапазоне частот от 1 до 63 Гц, локальной - от 8 до 1000 Гц (в октавных полосах со среднегеометрическими частотами соответственно 1; 2; 4; 8; 16; 31,5; 63 Гц и 8; 16; 31,5; 63; 125; 250; 500; 1000 Гц). По частотному спектру вибрации подразделяются на низкочастотные - 8 и 16 Гц, среднечастотные - 31,5 и 63 Гц, высокочастотные - 125, 250, 500, 1000 Гц для локальных вибраций; для вибрации рабочих мест - соответственно 1, 2 и 4 Гц, 8 и 16 Гц, 31,5 и 63 Гц.

Вибрации свойствен эффект резонанса, который проявляется в резком усилении собственных колебательных движений тела при совпадении их кратности с частотой вибрации, воздействующей извне. Собственные резонансные колебательные частоты печени

составляют 5 Гц, почек - 7 Гц, сердца - 6 Гц, головы - 20 Гц и т.д. Для всего тела в положении сидя резонанс проявляется на частотах 4-6 Гц. При совпадении частот вибрации источника и собственной резонансной частоты органов опасность неблагоприятного действия на организм значительно возрастает.

Существует классификация общей вибрации по частотному спектру, учитывающая резонанс биологических тканей и органов человека: низкочастотная нерезонансная - 0,1-5 Гц; низкочастотная резонансная - 6-10 Гц; среднечастотная резонансная - 11-30 Гц; среднечастотная нерезонансная - 31-50 Гц; высокочастотная - свыше 50 Гц.

Вибрация оказывает сильное биологическое действие на организм человека. Несмотря на неуклонное снижение профессиональной заболеваемости в нашей стране, вибрационная болезнь продолжает занимать одно из ведущих мест в структуре профпатологий.

Выделяют следующие стадии вибрационной болезни, вызванной локальной вибрацией.

I стадия - начальная. Выраженных симптомов нет. Периодически могут возникать боли и парестезии в руках, снижается чувствительность кончиков пальцев.

II стадия - умеренно выраженная. Боли и чувство онемения более выражены, снижение чувствительности распространяется на все пальцы и даже на предплечье, снижается температура кожи на пальцах, выражены гипергидроз и цианоз кистей рук.

III стадия - выраженная. Значительные боли в пальцах рук, кисти обычно холодные и влажные.

IV стадия - стадия генерализованных расстройств. Встречается редко и преимущественно у рабочих с большим стажем. Отмечаются сосудистые расстройства на руках и ногах, спазмы сердечных и мозговых сосудов.

Вибрационная болезнь может долго оставаться компенсированной, и больные сохраняют трудоспособность.

К числу основных проявлений вибрационной болезни относятся нейрососудистые расстройства. Они проявляются раньше всего на руках и сопровождаются интенсивными болями после работы и по ночам (рис. 11.3, 11.4). Нередко наблюдается так называемый феномен мертвого пальца (рис. 11.5). Параллельно развиваются мышечные и костные изменения (атрофические изменения кисти по типу «птичьей лапы»), а также расстройства нервной системы по типу неврозов (рис.11.3; 11.4; 11.5).

Рис. 11.3. Трофические нарушения в кисти (а) и пальцах рук (б) при вибрационной болезни

Рис. 11.4. Изменения ногтей при вибрационной болезни

При воздействии общей вибрации отмечаются нарушения функций ЦНС (жалобы на головную боль, головокружение, потерю памяти, шум в ушах), сердечно-сосудистой системы, в том числе сердца и периферических сосудов, костно-суставного аппарата, органов малого таза и др.

В профилактике вредного действия вибрации ведущая роль принадлежит техническим мероприятиям. Это внедрение дистанционного управления виброопасными процессами, усовершенствование ручных инструментов путем уменьшения вибрации в источнике ее образования и по пути распространения, установка виброгасящих амортизаторов под станки, оборудование и сиденья на рабочих местах. Эффективны обеспечение рационального режима труда и

Рис. 11.5. Симптом «мертвого пальца» при вибрационной болезни

отдыха, организация комплексных бригад и овладение смежными профессиями, что позволяет уменьшить время контакта рабочих с вибрацией. Из средств индивидуальной защиты рекомендуются рукавицы с пробковой прокладкой на ладонях при локальной вибрации и специальная обувь на толстой эластичной подошве при общей вибрации.

Необходимы физиотерапевтические процедуры: сухие ванны для рук, массаж и самомассаж, производственная гимнастика, ультрафиолетовое облучение. При работе с ручным инструментом следует избегать переохлаждения рук. Перерывы в работе сочетают с отдыхом в теплом помещении.

Важным условием профилактики является соблюдение гигиенических нормативов вибрации на рабочем месте.

Все работающие в условиях воздействия вибрации должны проходить периодические медицинские осмотры. Перед поступлением на работу проводят предварительный медицинский осмотр.

Канцерогенные вещества

К числу профессиональных канцерогенных веществ, или канцерогенов, относятся:

• продукты перегонки и фракционирования каменного угля, в том числе деготь, пек, креозот, антраценовое масло и др.;

•  продукты перегонки и фракционирования сланцев, древесного угля, нефти, неочищенный воск;

•  ароматические амины, нитро- и азотосоединения;

•  отдельные продукты обработки хромовой и никелевой руд;

•  неорганические соединения мышьяка;

•  асбест;

•  изопропиловое масло;

•  отдельные соединения бериллия.

Бластомогенное действие веществ проявляется как при постоянном, так и при нерегулярном контакте с ними, а также через длительное время после прекращения контакта.

Рост числа случаев профессионального рака в последние годы обусловлен применением в промышленности и сельском хозяйстве новых канцерогенных веществ.

Профессиональный рак кожи чаще всего локализуется на открытых частях тела и возникает в результате воздействия химических веществ и ионизирующего излучения. Известны случаи рака кожи у трубочистов, обусловленного воздействием сажи, содержащей сильный канцероген 3,4-бенз(а)пирен.

Зарегистрированы случаи профессионального рака от воздействия каменноугольного дегтя, парафина, минеральных масел. Рак кожи встречается у врачей-рентгенологов, техников рентгеновских кабинетов. Чаще поражается кожа рук. Этому предшествуют хронические дерматиты, папилломы.

Профессиональный рак легких развивается при контакте с продуктами перегонки сланцев, угля, нефти, соединениями хрома, никеля, мышьяка и др.

Профессиональный рак мочевого пузыря вызывает вдыхание паров анилина.

В целях предупреждения профессионального рака следует в первую очередь удалять из технологического процесса химические соединения с канцерогенными свойствами.

В настоящее время российским законодательством запрещено производство 2-нафтиламина, бензидина, 2,3-дихлорбензидина, 4-аминодифенила, а также использование пека в качестве дорожного покрытия.

Важной задачей являются разработка и внедрение технологических процессов, при которых исключается загрязнение окружающей среды канцерогенами. Оборудование, в котором еще используются

химические соединения канцерогенного действия, должно быть полностью герметичным.

Необходимы диспансеризация и периодические медицинские осмотры лиц, которые могут подвергаться воздействию канцерогенных веществ. Лиц с хроническими формами патологии, способной в дальнейшем переходить в раковые заболевания, берут на специальный учет.

YAmedik.org