СКЕЛЕТНЫЕ ТКАНИ

СКЕЛЕТНЫЕ ТКАНИ

Скелетные ткани (textus skeletales) - это разновидности соединительной ткани со значительно выраженной опорной, механической функцией, обусловленной наличием плотного межклеточного вещества: хрящевые, костные ткани, дентин и цемент зуба. Помимо главной функции, эти ткани принимают участие в водно-солевом обмене веществ.

8.2.1. Хрящевые ткани

Хрящевые ткани (textus cartilaginei) входят в состав органов дыхательной системы, суставов, межпозвонковых дисков и другого, состоят из клеток - хондроцитов и хондробластов и большого количества межклеточного гидрофильного вещества, отличающегося упругостью. Именно с этим связана опорная функция хрящевых тканей. В свежей хрящевой ткани содержится около 70-80 % воды, 10-15 % органических веществ и 4-7 % солей. От 50 до 70 % сухого вещества хрящевой ткани составляет коллаген. Собственно хрящевая ткань не имеет кровеносных сосудов, а питательные вещества диффундируют из окружающей ее надхрящницы.

Классификация. Различают три вида хрящевой ткани: гиалиновую, эластическую, волокнистую. Такое подразделение хрящевых тканей основано на структурно-функциональных особенностях строения их межклеточного вещества, степени содержания и соотношения коллагеновых и эластических волокон.

Развитие хрящевой ткани (хондрогистогенез)

Источником развития хрящевых тканей является мезенхима. Вначале в некоторых участках тела зародыша, где образуется хрящ, клетки мезенхи-

мы теряют свои отростки, усиленно размножаются и, плотно прилегая друг к другу, создают определенное напряжение - тургор. Такие участки называют хондрогенными зачатками, или хондрогенными островками (рис. 8.17). В их составе находятся стволовые клетки, которые дифференцируются в полустволовые хон-дрогенные клетки. Стволовые клетки характеризуются округлой формой, высоким значением ядерно-цитоплазматических отношений, диффузным расположением хроматина и небольшим ядрышком. Органеллы в этих клетках развиты слабо. В полустволовых клетках (прехондробластах) увеличивается количество свободных рибосом, появляются мембраны эндоплазма-тической сети гранулярного типа, удлиняется форма клеток, уменьшаются ядерно-цитоплазматические отношения. В дальнейшем малодиф-ференцированные предшественники дифференцируются в морфологически идентифицируемые хондробла-сты (см. рис. 8.17).

Хондробласты (от греч. chondros - хрящ, blastos - зачаток) - это молодые уплощенные клетки, способные к пролиферации и синтезу межклеточного вещества хряща (протеогли-канов). Цитоплазма хондробластов имеет хорошо развитую гранулярную и агранулярную эндоплазма-тическую сеть, комплекс Гольджи. При окрашивании цитоплазма хон-дробластов оказывается базофиль-ной в связи с богатым содержанием

Рис. 8.17. Развитие гиалиновой хрящевой ткани (схема по Ю. И. Афанасьеву): а - хондрогенный островок; б - первичная хрящевая ткань; в - стадии дифференцировки хондроцитов. 1 - мезенхимные клетки; 2 - митотически делящиеся клетки; 3 - межклеточное вещество; 4 - оксифильное межклеточное вещество; 5 - базофильное межклеточное вещество; 6 - молодые хондроциты; 7 - гемокапилляр

Рис. 8.18. Изогенные группы хрящевых клеток:

1 - хондроцит; 2 - матрикс клеточной территории, состоящий из петлистой сети неколлагеновых белков и протео-гликанов; 3 - коллагеновые волокна, образующие стенку лакуны; 4 - межтерриториальный участок хряща; 5 - проте-огликаны в межтерриториальном матрик-се (по В. Н. Павловой, с изменениями)

РНК. Хондробласты синтезируют и секретируют фибриллярные белки (коллаген), возникает межклеточное вещество, которое окрашивается оксифильно. Так образуется первичная хрящевая ткань. При участии хондробластов происходит периферический (аппозиционный) рост хряща. При дальнейшей дифференцировке хрящевой ткани хондробласты развиваются в хондроциты.

Хондроциты - основной вид клеток хрящевой ткани. Они бывают овальными, круглыми или полигональной формы - в зависимости от степени дифференцировки. Расположены в особых полостях (лакунах) в межклеточном веществе поодиночке или группами. Группы клеток, лежащие в общей полости, называются изогенными (от греч. isos - равный, genesis - развитие). Они образуются путем деления одной клетки (рис. 8.18). В изогенных группах различают три типа хондроцитов.

Первый тип хондроцитов характеризуется высоким ядерно-цитоплазматическим отношением, развитием вакуолярных элементов комплекса Гольджи, наличием митохондрий и свободных рибосом в цитоплазме. В этих клетках нередко наблюдаются фигуры митотического деления, что позволяет рассматривать их как источник возникновения изогенных групп клеток (рис. 8.19). Хондроциты I типа преобладают в молодом, развивающемся хряще. Хондроциты II типа отличаются снижением ядерно-цитоплазматического отношения, ослаблением синтеза ДНК, сохранением высокого уровня РНК, интенсивным развитием гранулярной эндоплазматической сети и всех компонентов комплекса Гольджи, которые обеспечивают образование и секрецию гликозаминогликанов и протеогликанов в межклеточное вещество. Хондроциты III типа отличаются самым низким ядерно-цитоплазматическим отношением, сильным развитием и упорядоченным расположением гранулярной эндо-плазматической сети. Эти клетки сохраняют способность к образованию и секреции белка, но в них снижается синтез гликозаминогликанов.

По мере развития хрящевой закладки на периферии на границе с мезенхимой формируется надхрящница - оболочка, покрывающая развивающийся хрящ снаружи и состоящая из наружного волокнистого и внутреннего хон-дрогенного (камбиального) слоев. В хондрогенной зоне клетки интенсивно делятся, дифференцируются в хондробласты, которые сохраняют способность к синтезу ДНК, размножению, а также к синтезу компонентов межклеточного вещества (коллагена I и III типов). В процессе секреции продуктов синтеза и наслаивания на уже имеющийся хрящ по его периферии сами

клетки «замуровываются» в продукты своей деятельности. Так происходит рост хряща способом наложения, или аппозиционный рост.

Хрящевые клетки, лежащие в центре молодого развивающегося хряща, сохраняют способность в течение некоторого времени делиться митотически, оставаясь в одной лакуне (изогенные группы клеток), и вырабатывать коллаген II типа. За счет увеличения количества этих клеток и выработки ими межклеточного вещества происходит увеличение массы хряща изнутри, что называется интерстициальным ростом. Интерстициальный рост наблюдается в эмбриогенезе, а также при регенерации хрящевой ткани.

При росте и развитии хряща его центральные участки все более отдаляются от близлежащих сосудов и начинают испытывать затруднения в питании, осуществляемом диф-фузно со стороны сосудов надхрящницы. Вследствие этого хондроциты теряют способность размножаться, некоторые из них подвергаются разрушению, а протеогликаны превращаются в более простой оксифиль-ный белок - альбумоид.

Таким образом, хондробласти-ческий дифферон в эмбриональном гистогенезе представлен всеми формами созревающих клеток. Однако в последующем он включает только средние и конечные звенья (хондробласты и хондроциты) и является единственным в хрящевых тканях.

Рис. 8.19. Три типа хондроцитов (по Ю. И. Афанасьеву):

а - I тип; б - II тип; в - III тип. 1 - митотически делящаяся клетка; 2 - эндоплаз-матическая сеть; 3 - митохондрии; 4 - гликоген; 5 - межклеточное вещество

Гиалиновая хрящевая ткань

Гиалиновая хрящевая ткань (textus cartilagineus hyalinus), называемая еще стекловидной (от греч. hyalos - стекло) - в связи с ее прозрачностью и голубовато-белым цветом, является наиболее распространенной разновид-

Рис. 8.20. Гиалиновый хрящ: а - микрофотография гиалинового хряща трахеи: 1 - надхрящница; 2 - молодые хондроциты; 3 - основное вещество с расположенными внутри него изогенными группами хондроцитов (4)

ностью хрящевой ткани. Во взрослом организме гиалиновая ткань встречается в местах соединения ребер с грудиной, в гортани, воздухоносных путях, на суставных поверхностях костей.

Гиалиновая хрящевая ткань различных органов имеет много общего, но в то же время различается по органоспецифичности - расположению клеток, строению межклеточного вещества. Большая часть встречающейся в организме человека гиалиновой хрящевой ткани покрыта надхрящницей (perichondrium) и представляет собой анатомические образования - хрящи.

В надхрящнице выделяют два слоя: наружный, состоящий из волокнистой соединительной ткани с кровеносными сосудами; внутренний, преимущественно клеточный, содержащий хондробласты и их предшественники - прехон-дробласты. Под надхрящницей в поверхностном слое располагаются молодые хондроциты веретенообразной формы, длинная ось которых направлена вдоль поверхности хряща (рис. 8.20). В более глубоких слоях хрящевые клетки приобретают овальную или круглую форму. В связи с тем, что синтетические и секреторные процессы у этих клеток ослабляются, они после деления далеко не расходятся, а лежат компактно, образуя так называемые изогенные группы из 2-4 хондроцитов.

Более дифференцированные хрящевые клетки и изогенные группы, кроме оксифильного перицеллюлярного слоя межклеточного вещества, имеют расположенную кнаружи базофильную зону. Эти свойства объясняются неравномерным распределением химических компонентов межклеточного вещества - белков и гликозаминогликанов.

В гиалиновом хряще любой локализации принято различать территориальные участки межклеточного вещества, или матрикса (см. рис. 8.18). К территориальному участку относится матрикс, непосредственно окружающий хрящевые клетки или их группы. В этих участках коллагеновые волокна II типа и фибриллы, извиваясь, окружают изогенные группы хрящевых клеток, предохраняя их от механического давления. В межтерриториаль-

Рис. 8.20. Продолжение

б - схема строения хряща и надхрящницы (рис. Ю. И. Афанасьева): 1 - наружный волокнистый слой; 2 - внутренний клеточный слой; 3 - хрящевая ткань; в - клеточные и волокнистые компоненты суставного хряща (по В. П. Модяеву, В. Н. Павловой, с изменениями). I - поверхностная зона; II - промежуточная зона; III - базальная (глубокая) зона; IV - субхондральная кость; А - клеточные компоненты суставного хряща: 1 - бесклеточная пластинка; 2 - хондроциты тангенциального слоя; 3 - хон-дроциты переходного участка; 4 - изогенные группы; 5 - «колонки» хондроцитов; 6 - гипертрофированные хондроциты; 7 - базофильная (пограничная) линия между кальцинированным и некальцинированным хрящом; 8 - кальцифицирующийся хрящ; Б - фибриллярная система суставного хряща: 1 - бесклеточная пластинка; 2 - тангенциальные волокна поверхностной зоны; 3 - основные направления кол-лагеновых волокон в промежуточной зоне; 4 - радиальные волокна базального слоя; 5 - базофильная (пограничная) линия

ном матриксе коллагеновые волокна ориентированы в направлении вектора действия сил основных нагрузок. Пространство между коллагеновыми структурами заполнено протеогликанами.

В структурной организации межклеточного вещества хряща большую роль играет хондронектин. Этот гликопротеин соединяет клетки между собой и с различными субстратами (коллагеном, гликозаминогликанами). Опорная биомеханическая функция хрящевых тканей при сжатии, растяжении обеспечивается не только строением ее волокнистого каркаса, но и наличием гидрофильных протеогликанов с высоким уровнем гидратации (65-85 %). Высокая гидрофильность межклеточного вещества способствует диффузии питательных веществ, солей. Газы и многие метаболиты также свободно диффундируют через него. Однако крупные белковые молекулы, обладающие антигенными свойствами, не проходят. Этим объясняется успешная трансплантация в клинике (пересадка от одного человека к другому) участков хряща. Метаболизм хон-дроцитов преимущественно анаэробный, гликолитический.

Однако не все хрящи построены одинаково. Структурной особенностью гиалинового хряща суставной поверхности является отсутствие надхрящницы на поверхности, обращенной в полость сустава. Суставной хрящ состоит из трех нечетко разграниченных зон: поверхностной, промежуточной и базальной (см. рис. 8.20, в).

В поверхностной зоне суставного хряща располагаются мелкие уплощенные малоспециализированные хондроциты, напоминающие по строению фиброциты.

В промежуточной зоне клетки более крупные, округлой формы, метаболически очень активные: с крупными митохондриями, хорошо развитой гранулярной эндо-плазматической сетью, комплексом Гольджи с многочисленными пузырьками.

Глубокая (базальная) зона делится базофильной линией на некальцинирую-щийся и кальцинирующийся слои. В последний из подлежащей субхондральной кости проникают кровеносные сосуды. Особенностью межклеточного вещества глубокой зоны суставного хряща является содержание в нем плотных матриксных пузырьков - мембранных структур диаметром от 30 нм до 1 мкм, которые являются локусами инициальной минерализации скелетных тканей (помимо хряща, они обнаруживаются в костной ткани и предентине). Мембранные структуры образуются путем выбухания участка плазмолеммы хондроцита (соответственно остеобласта в костной ткани и одонтобласта в предентине) с последующим отпочковыванием от поверхности клетки и локализованным распределением в зонах минерализации. Они также могут являться продуктом полной дезинтеграции клеток. Питание суставного хряща лишь частично осуществляется из сосудов глубокой зоны, а в основном за счет синовиальной жидкости полости сустава.

Эластическая хрящевая ткань

Эластическая хрящевая ткань (textus cartilagineus elasticus) встречается в тех органах, где хрящевая основа подвергается изгибам (в ушной раковине, рожковидных и клиновидных хрящах гортани и др.). В свежем, нефиксированном состоянии эластическая хрящевая ткань бывает желтоватого цвета и не такая прозрачная, как гиалиновая. По общему плану строения эластический хрящ сходен с гиалиновым. Снаружи он покрыт надхрящницей. Хрящевые клетки (молодые и специализированные хондроциты) располагаются в капсулах поодиночке или образуют изогенные группы. Одним из главных отли-

чительных признаков эластического хряща является наличие в его межклеточном веществе наряду с колла-геновыми волокнами эластических волокон, пронизывающих межклеточное вещество во всех направлениях (рис. 8.21).

Из слоя, прилежащего к надхрящнице, эластические волокна без перерыва переходят в эластические волокна надхрящницы. Липидов, гликогена и хондроитинсульфатов в эластическом хряще меньше, чем в гиалиновом.

Рис. 8.21. Эластическая хрящевая ткань. Микрофотография, окраска - орсеин: 1 - изогенные группы хондроцитов; 2 - эластические волокна

Волокнистая хрящевая ткань

Волокнистая хрящевая ткань (textus cartilagineus fibrosa) находится в межпозвонковых дисках, полуподвижных сочленениях, в местах перехода волокнистой соединительной ткани (сухожилия, связки) в гиалиновый хрящ, где ограниченные движения сопровождаются сильными натяжениями. Межклеточное вещество содержит параллельно направленные коллагеновые пучки,

постепенно разрыхляющиеся и переходящие в гиалиновый хрящ. В хряще имеются полости, в которые заключены хрящевые клетки. Последние располагаются поодиночке или образуют небольшие изогенные группы. Цитоплазма клеток часто бывает вакуолизированной. По направлению от гиалинового хряща к сухожилию волокнистый хрящ становится все более похожим на сухожилие. На границе хряща и сухожилия между коллагено-выми пучками лежат столбиками сдавленные хрящевые клетки, которые без какой-либо границы переходят в сухожильные клетки, расположенные в плотной соединительной ткани (рис. 8.22).

Возрастные изменения. По мере старения организма в хрящевой ткани уменьшаются концентрация протеогликанов и связанная с ними гидро-фильность. Ослабляются процессы размножения хондробластов и молодых хондроцитов. В цитоплазме этих клеток уменьшается объем комплекса Гольджи, гранулярной эндоплазматической сети, митохондрий и снижается активность ферментов.

В резорбции дистрофически измененных клеток и межклеточного вещества участвуют хондрокласты, морфологически идентичные остеокластам. Часть лакун после гибели хондроцитов заполняются аморфным веществом и коллагеновыми фибриллами. Местами в межклеточном

Рис. 8.22. Волокнистая хрящевая ткань. Срез межпозвонкового диска: 1 - коллагеновые волокна; 2 - хондроциты

веществе обнаруживаются отложения солей кальция («омеление хряща»), вследствие чего хрящ становится мутным, твердым и ломким. В результате появляющееся нарушение трофики центральных участков хряща может привести к врастанию в них кровеносных сосудов с последующим костеобразованием.

Регенерация. Физиологическая регенерация хрящевой ткани осуществляется за счет малодифференцированных клеток надхрящницы и хряща, путем размножения и дифференцировки прехондробластов и хондробла-стов. Однако этот процесс идет очень медленно. Посттравматическая регенерация хрящевой ткани внесуставной локализации осуществляется за счет надхрящницы (рис. 8.23).

В суставном хряще в зависимости от глубины травмы регенерация происходит как за счет размножения только клеток в изогенных группах (при неглубоком повреждении), так и за счет второго источника регенерации - камбиальных клеток субхондральной костной ткани (при глубоком повреждении хряща), которые образуют органический матрикс кости - остеоид.

В любом случае непосредственно в области травмы хрящевой ткани отмечаются дистрофические (некротические) процессы, а центробежнее располагаются про-лиферирующие хондробласты. В ране формируется волокнистая соединительная ткань, которая в последующем замещается хрящевой. В целом регенерация завершается через 3-6 мес после травмы.

Факторы регуляции метаболизма хрящевых тканей. Регуляция метаболизма хрящевой ткани происходит под действием механической нагрузки, нервных и гормональных факторов. Периодическое давление на хрящевую ткань и ослабление нагрузки являются постоянно действующими факторами диффузии растворенных в воде питательных веществ, продуктов метаболизма и гормонально-гуморальных регуляторов из капилляров надхрящницы, имеющей рецепторы и эффекторы, или синовиальной жидкости суставов. Кроме того, хондроциты имеют циторецепторы ряда гормонов, циркулирующих в крови. Так, гормоны гипофиза - соматотропин

и пролактин - стимулируют рост хрящевых тканей, но не влияют на их созревание. Гормоны щитовидной железы - тироксин и трийодтиронин - ускоряют цитодифференцировку хондроцитов, но ингибируют ростовые процессы в хрящах. Гормоны щитовидной и околощитовидной желез - кальцитонин и паратгормон - оказывают сходное действие на метаболизм хрящей, способствуют стимуляции ростовых процессов, но в меньшей степени их созреванию. Гормон эндокринных островков поджелудочной железы - инсулин - усиливает цитодифференцировку клеток скелетогенной мезенхимы, а на этапах постнатального онтогенеза оказывает ростовое и митогенное действие. Гормоны коры надпочечников - глюкокортикои-ды и женский половой гормон эстроген - ингибируют в хондроцитах биосинтез коллагена и гликозаминогликанов, а в раннем постнатальном периоде их высокие концентрации способствуют старению хрящевой ткани и деструктивным изменениям в ней. Мужской половой гормон - тестостерон - стимулирует биосинтез несульфатированных гликозаминогликанов, что приводит к снижению процессов созревания хрящевой ткани. В целом необходимо отметить, что гормоны регулируют специфические метаболические процессы в хондроцитах, но способность хондроцитов давать реакцию на их действие зависит как от состояния эндокринного статуса организма (норма, дефицит или избыток гормонов), так и структурно-функционального состояния самих хондроцитов.

8.2.2. Костные ткани

Костные ткани (textus ossei) - это специализированный полидифферон-ный вид соединительной ткани с высокой минерализацией межклеточного

Рис. 8.23. Посттравматическая регенерация гиалинового хряща при неглубоком (а1 и

б1 и глубоком (а2 и б2) повреждениях: а\ 2 - регенерация суставного хряща: 1 - синовиальная оболочка; 2 - хрящ; 3 - кость; 4 - зона некроза; 5 - зона пролиферации; 6 - некальцифицированный хрящ; 7 - каль-цифицированный хрящ; 8 - остеоны с сосудами; 9 - костный мозг; 10 - грануляционная ткань; б - регенерация реберного хряща: 1 - перихондр; 2 - хрящ; 3 - зона некроза; 4 - зона пролиферации; 5 - грануляционная ткань (по В. Н. Павловой). Стрелки - направления перемещений клеток и тканей в раневом процессе

органического вещества, содержащего около 70 % неорганических соединений, главным образом фосфатов кальция. В костной ткани обнаружено более 30 микроэлементов (медь, стронций, цинк, барий, магний и др.), играющих важнейшую роль в метаболических процессах в организме.

Органическое вещество - матрикс костной ткани - представлено в основном белками коллагенового типа и липидами. По сравнению с матрик-сом хрящевой ткани в нем содержится относительно небольшое количество воды, хондроитинсерной кислоты, но много лимонной и других кислот, образующих комплексы с кальцием, импрегнирующим органическую матрицу кости. Органические и неорганические компоненты в сочетании друг с другом определяют механические свойства - способность сопротивляться растяжению, сжатию и др. Из всех разновидностей соединительных тканей в костной ткани наиболее выражены опорная, механическая и защитная функции. Для внутренних органов она также является депо солей кальция, фосфора и др.

Несмотря на высокую степень минерализации, в костных тканях происходят постоянное обновление входящих в их состав веществ, постоянное разрушение и созидание, адаптация в связи с изменяющимися условиями функционирования. Морфофункциональные свойства костной ткани меняются в зависимости от возраста, мышечной деятельности, условий питания, а также под влиянием деятельности желез внутренней секреции, иннервации и др.

Классификация. Существуют два основных типа костных тканей: грубо-волокнистая (сетчато-волокнистая) и пластинчатая. Эти разновидности костной ткани различаются по структурным и физическим свойствам, которые обусловлены главным образом строением межклеточного вещества. К костным тканям относятся также дентин и цемент зуба, имеющие сходство с костной тканью по высокой степени минерализации межклеточного вещества (см. главу 16) и опорной, механической функцией.

Грубоволокнистая костная ткань

Грубоволокнистая костная ткань (textus osseus reticulofibrosus) встречается главным образом у зародышей. У взрослых ее можно обнаружить на месте заросших черепных швов, в местах прикрепления сухожилий к костям. Беспорядочно расположенные коллагеновые волокна образуют в ней толстые пучки, хорошо заметные даже при сравнительно небольших увеличениях микроскопа (рис. 8.24).

В основном веществе грубоволокнистой костной ткани находятся удлиненно-овальной формы костные полости, или лакуны, с длинными ана-стомозирующими канальцами, в которых лежат костные клетки - остеоци-ты с их отростками. С поверхности кость покрыта надкостницей.

Пластинчатая костная ткань

Пластинчатая костная ткань (textus osseus lamellaris) - наиболее распространенная разновидность костной ткани во взрослом организме. Она состоит из костных пластинок (lamellae ossea). Толщина и длина последних

Рис. 8.24. Строение грубоволокнистой костной ткани (по Ю. И. Афанасьеву): 1 - пучки переплетающихся коллагеновых волокон; 2 - остеоциты

колеблется от нескольких десятков до сотен микрометров соответственно. Они не монолитны, а содержат параллельно направленные коллагеновые (оссеиновые) фибриллы, ориентированные в различных плоскостях. В центральной части пластин фибриллы имеют преимущественно продольное направление, по периферии - прибавляется тангенциальное и поперечное направления. Пластинки могут расслаиваться, а фибриллы одной пластинки могут продолжаться в соседние, создавая единую волокнистую основу кости. Кроме того, костные пластинки пронизаны отдельными фибриллами и волокнами, ориентированными перпендикулярно костным пластинкам, вплетающимися в промежуточные слои между ними, благодаря чему достигается большая прочность пластинчатой костной ткани (рис. 8.25). Из этой ткани построены компактное и губчатое вещество в большинстве плоских и трубчатых костей скелета.

Развитие костных тканей (остеогистогенез)

Развитие костной ткани у эмбриона осуществляется двумя способами: 1) непосредственно из мезенхимы (прямой остеогенез); 2) из мезенхимы на месте ранее развившейся хрящевой модели кости (непрямой остеогенез). Постэмбриональное развитие костной ткани происходит при физиологической и репаративной регенерации.

Костная ткань включает остеобластический и остеокластический дифферо-ны. Первый (основной) состоит из ряда дифференцирующихся клеток: стволовые, полустволовые клетки (преостеобласты), остеобласты (разновидность

Рис. 8.25. Строение пластинчатой костной ткани (по Ю. И. Афанасьеву):

1 - костные пластинки; 2 - остеоциты; 3 - контакты отростков остеоцитов; 4 -

коллагеновые волокна, ориентированные в пределах каждой костной пластинки

параллельно

фибробластов), остеоциты. На процессы остеогенной дифференцировки клеток влияют остеогенные факторы (костный морфогенетический белок), парциальное давление кислорода в ткани, наличие щелочной фосфатазы и др. Второй (сопутствующий) дифферон включает остеокласты (разновидность макрофагов), развивающиеся из стволовых клеток крови.

Стволовые и полустволовые остеогенные клетки морфологически не идентифицируются.

Остеобласты (от греч. osteon - кость, blastos - зачаток) - это молодые клетки, создающие костную ткань. В сформировавшейся кости они встречаются только в глубоких слоях надкостницы и в местах регенерации костной ткани после ее травмы. Они способны к пролиферации, в образующейся кости покрывают почти непрерывным слоем всю поверхность развивающейся костной балки (рис. 8.26). Форма остеобластов бывает различной: кубической, пирамидальной или угловатой. Размер их тела около 15-20 мкм. Ядро округлой или овальной формы, часто располагается эксцентрично, содержит одно или несколько ядрышек.

Рис. 8.26. «Прямой» остеогенез:

а - остеогенный островок (схема); б - остеоидная стадия (схема); в - оссификация межклеточного вещества (схема); г - «прямой» остеогенез в плоской кости (микрофотография). 1 - мезенхимные клетки; 2 - кровеносные капилляры; 3 - остеобласты; 4 - остеоид; 5 - минерализованное межклеточное вещество; 6 - остеоцит; 7 - остеокласт

В цитоплазме остеобластов хорошо развиты гранулярная эндоплазматическая сеть, митохондрии и комплекс Гольджи (рис. 8.27). В ней выявляются в значительных количествах РНК и высокая активность щелочной фосфа-тазы. Остеобласты выделяют матриксные пузырьки, содержащие липиды,

Рис. 8.27. Строение остеобласта (по Ю. И. Афанасьеву):

а - на светооптическом уровне; б - на ультрамикроскопическом уровне. 1 - ядро; 2 - цитоплазма; 3 - гранулярная эндоплазматическая сеть; 4 - остеоид; 5 - минерализованное вещество костной ткани

Са2+, щелочную фосфатазу, что приводит к кальцификации органического матрикса ткани.

Остеоциты (от греч. osteon - кость, cytus - клетка) - это преобладающие по количеству дефинитивные клетки костной ткани, утратившие способность к делению. Они имеют отрост-чатую форму, компактное, относительно крупное ядро и слабобазофильную цитоплазму (рис. 8.28). Органеллы развиты слабо. Наличие центриолей в остеоцитах не установлено.

Костные клетки лежат в костных полостях, или лакунах, которые повторяют контуры остеоцита. Длина полостей колеблется от 22 до 55 мкм, ширина - от 6 до 14 мкм. Канальцы костных полостей заполнены тканевой жидкостью, анасто-мозируют между собой и с перива-

скулярными пространствами сосудов, заходящих внутрь кости. Обмен веществ между остеоцитами и кровью осуществляется через тканевую жидкость.

Остеокласты (от греч. osteon - кость и clastos - раздробленный). Эти клетки гематогенной природы способны разрушать обызвествленный хрящ и кость. Диаметр их достигает 150-180 мкм, они содержат от 3 до нескольких десятков ядер (рис. 8.29). Цитоплазма слабобазофильна, иногда оксифильна. Остеокласты располагаются обычно на поверхности костных перекладин. На той стороне остеокласта, которая прилежит к разрушаемой поверхности, имеется микроскладчатая (гофрированная) кайма; она является областью синтеза и секреции гидролитических ферментов. По периферии остеокласта находится зона плотного прилегания клетки к костной поверхности, которая как бы герметизирует область действия ферментов. Эта зона цитоплазмы светлая, содержит мало органелл, за исключением микрофиламен-тов, состоящих из актина.

Периферический слой цитоплазмы над гофрированным краем содержит многочисленные мелкие пузырьки и более крупные - вакуоли. Полагают, что остеокласты выделяют СО2 в окружающую среду, а фермент - карбоан-гидраза, обнаруживаемый здесь, способствует образованию кислоты (Н2СО3) и растворению кальциевых соединений. Остеокласт богат митохондриями и лизосомами, ферменты которых (коллагеназа и другие протеазы) расщепляют коллаген и протеогликаны матрикса костной ткани. В том месте, где остеокласт соприкасается с костным веществом, в последнем образуется резорбционная лакуна. Один остеокласт может разрушить столько кости, сколько создают 100 остеобластов за это же время. Функции остеобла-

стов и остеокластов взаимосвязаны и коррелируют с участием гормонов, простагландинов, функциональной нагрузкой, витаминами и др.

Межклеточное вещество (substantia intercellularis) состоит из основного аморфного вещества, импрегниро-ванного неорганическими солями, в котором располагаются коллаге-новые волокна, образующие небольшие пучки. Они содержат (до 90 %) белок - коллаген I типа. Волокна могут иметь беспорядочное (в гру-боволокнистой костной ткани) или строго ориентированное (в пластинчатой костной ткани) направление.

В основном веществе костной ткани по сравнению с хрящевой содержится относительно небольшое количество хондроитинсерной кислоты, но много лимонной и других кислот, образующих комплексы с кальцием, импрегни-рующих органический матрикс кости. Кроме коллагенового белка, в основном веществе костной ткани обнаруживают неколлагеновые белки (остеокальцин, сиалопротеин, остеонектин, остеопон-тин и др., принимающие участие в процессах минерализации), а также гли-козаминогликаны. Основное вещество кости содержит кристаллы гидроксиа-патита, упорядоченно расположенные по отношению к фибриллам органической матрицы кости, а также аморфный фосфат кальция. В костной ткани обнаружено более 30 микроэлементов (медь, стронций, цинк, барий, магний и др.), играющих важнейшую роль в метаболических процессах в организме. Систематическое увеличение физической нагрузки приводит к нарастанию костной массы от 10 до 50 % вследствие высокой минерализации.

Прямой остеогистогенез. Такой способ остеогенеза характерен для развития грубоволокнистой костной ткани при образовании плоских

Рис. 8.28. Строение остеоцита (по Ю. И. Афанасьеву):

а - на светооптическом уровне; б - на ультрамикроскопическом уровне. 1 - отростки остеоцитов; 2 - ядро; 3 - эндоплазматическая сеть; 4 - комплекс Гольджи; 5 - митохондрии; 6 - остеоидное (необызвест-вленное) вещество кости по краю лакуны, в которой расположены остеоциты

Рис. 8.29. Строение остеокласта (по Ю. И. Афанасьеву):

а - на светооптическом уровне; б - на ультрамикроскопическом уровне. 1 - ядро; 2 - гофрированный край остеокласта; 3 - светлая зона; 4 - лизосомы; 5 - зона резорбции межклеточного вещества; 6 - минерализованное вещество

костей, например покровных костей черепа. Этот процесс наблюдается в основном в течение 1-го мес внутриутробного развития и характеризуется образованием сначала первичной «перепончатой», остеоидной костной ткани с последующей импрегнацией (отложением) солей кальция, фосфора и других в межклеточном веществе. На первой стадии - образование ске-летогенного островка - в местах развития будущей кости происходят очаговое размножение мезенхимных клеток и васкуляризация скелетогенного островка. Клетки мезенхимы ориентируются согласно векторам нагрузки и дифференцируются в остеогенные предшественники - преостеобласты. На второй стадии происходит дифференцировка клеток островков в остеобласты, в которых начинается биосинтез белков коллагена и его секреция, в результате чего появляется оксифильное межклеточное вещество с колла-геновыми фибриллами - органический матрикс костной ткани (остеоид-ная стадия). Разрастающиеся волокна раздвигают клетки, которые с помощью формирующихся отростков остаются связанными друг с другом. Так остеобласты приобретают отростчатую форму и становятся остеоцитами, включенными в толщу волокнистой массы, и теряют способность к размножению. В основном веществе появляются мукопротеиды (оссеомукоид), цементирующие волокна в одну прочную массу. В то же время из окружающей мезенхимы образуются новые генерации остеобластов, которые наращивают кость снаружи (аппозиционный рост).

Третья стадия - кальцификация (импрегнация солями) межклеточного вещества. При этом остеобласты выделяют фермент щелочную фосфатазу, расщепляющую содержащиеся в периферической крови глицерофосфаты на углеводные соединения (сахара) и фосфорную кислоту. Последняя вступает в реакцию с солями кальция, который осаждается в основном веществе и волокнах сначала в виде соединений кальция, формирующих аморфные

отложения [Са3(РО4)2], в дальнейшем из него образуются кристаллы гидро-ксиапатита [Са10(РО4)6(ОН)2].

Одним из посредников кальцификации служит остеонектин - гликопро-теин, избирательно связывающий соли кальция и фосфора с коллагеном. В результате кальцификации образуются костные перекладины, или балки. Затем от этих перекладин ответвляются выросты, соединяющиеся между собой и образующие широкую сеть. Пространства между перекладинами оказываются занятыми рыхлой волокнистой соединительной тканью с проходящими в ней кровеносными сосудами.

К моменту завершения гистогенеза по периферии зачатка кости в эмбриональной соединительной ткани появляется большое количество волокон и остеогенных клеток. Часть этой волокнистой соединительной ткани, прилегающей непосредственно к костным перекладинам, развивается в периост (periosteum), который обеспечивает трофику и регенерацию кости. Такая кость, появляющаяся на стадиях эмбрионального развития и состоящая из перекладин грубоволокнистой костной ткани, называется первичной губчатой костью. На более поздних стадиях развития она заменяется вторичной губчатой костью взрослых, которая отличается от первой тем, что построена из пластинчатой костной ткани (четвертая стадия остеогене-за). Развитие пластинчатой костной ткани тесно связано с процессом разрушения отдельных участков кости и врастанием кровеносных сосудов в толщу грубоволокнистой кости. В этом процессе как в период эмбрионального остеогенеза, так и после рождения принимают участие остеокласты (см. рис. 8.29). Вокруг кровеносных сосудов образуется слой остеобластов и в дальнейшем возникают новые концентрические пластинки остеона. Коллагеновые волокна в каждой пластинке расположены параллельно, но ориентированы под углом к волокнам предыдущей пластинки. Таким образом, вокруг сосуда формируются как бы костные цилиндры, вставленные один в другой (первичные остеоны). С момента появления остеонов грубо-волокнистая костная ткань перестает развиваться и заменяется пластинчатой костной тканью. Со стороны надкостницы формируются наружные опоясывающие (общие, генеральные) пластинки, охватывающие всю кость снаружи. Так развиваются плоские кости. В дальнейшем образовавшаяся в эмбриональном периоде кость подвергается перестройке: разрушаются первичные остеоны и развиваются новые генерации остеонов. Такая перестройка кости практически продолжается всю жизнь.

В отличие от хрящевой ткани кость всегда растет способом наложения новой ткани на уже имеющуюся, т. е. путем аппозиции, и для дифференцировки клеток скелетогенного островка необходимо оптимальное кровоснабжение.

Непрямой остеогистогенез. На 2-м мес эмбрионального развития в местах будущих трубчатых костей закладывается из мезенхимы хрящевой зачаток, который очень быстро принимает форму будущей кости (хрящевая модель). Зачаток состоит из эмбрионального гиалинового хряща, покрытого надхрящницей (рис. 8.30). Некоторое время он растет как за счет клеток, образующихся со стороны надхрящницы, так и за счет размножения клеток во внутренних участках.

Рис. 8.30. Непрямой (хрящевой) остеогенез. Образование хрящевой модели кости и перихондральной костной манжетки (по Ю. И. Афанасьеву):

а-г - стадии остеогенеза. 1 - первичная хрящевая модель трубчатой кости; 2 - надхрящница; 3 - хрящевая ткань; 4 - перихондральная костная манжетка; 5 - надкостница; 6 - колонки хрящевых клеток; 7 - зона пузырчатых клеток; 8 - врастающая в хрящ мезенхима с дифференцирующимися остеокластами (9) и кровеносными капиллярами (10); 11 - остеобласты; 12 - эндохондрально образованная костная ткань; 13 - точка окостенения в эпифизе

Развитие кости на месте хряща, т. е. непрямой остеогенез, начинается в области диафиза (перихондральное окостенение). Образованию перихондрально-го костного кольца (манжетки) предшествует разрастание кровеносных сосудов с дифференцировкой в надхрящнице, прилежащей к средней части диафиза, остеобластов, образующих в виде манжетки сначала грубоволокнистую костную ткань (первичный центр окостенения), затем заменяющуюся пластинчатой.

Образование костной манжетки нарушает питание хряща. Вследствие этого в центре диафизарной части хрящевого зачатка возникают дистрофические изменения. Хондроциты вакуолизируются, их ядра пикнотизируют-ся, образуются так называемые пузырчатые хондроциты. Рост хряща в этом месте прекращается. Расширение перихондрального костного кольца сопровождается увеличением зоны деструкции хряща и появлением остеокластов, которые очищают пути для врастающих в модель трубчатой кости кровеносных сосудов и остеобластов (см. рис. 8.30). Это приводит к появлению очагов эндохондрального окостенения (вторичные центры окостенения). В связи с продолжающимся ростом соседних неизмененных дистальных отделов диафиза хондроциты на границе эпифиза и диафиза собираются в колонки, направление которых совпадает с длинной осью будущей кости. Таким образом, в колонке хондроцитов имеются два противоположно направленных процесса - размножение и рост в дистальных отделах диафиза и дистрофические процессы в его проксимальном отделе. Одновременно между набухшими клетками происходит отложение минеральных солей, обусловливающее появление резкой базофилии и хрупкости хряща.

С момента разрастания сосудистой сети и появления остеобластов надхрящница перестраивается, превращаясь в надкостницу. В дальнейшем кровеносные сосуды с окружающей их мезенхимой, остеогенными клетками и остеокластами врастают через отверстия костной манжетки и входят в соприкосновение с обызвествленным хрящом (см. рис. 8.30). Под влиянием ферментов, выделяемых остеокластами, происходит растворение (хондро-лиз) обызвествленного межклеточного вещества. Диафизарный хрящ разрушается, в нем возникают удлиненные пространства, в которых «поселяются» остеобласты, образующие на поверхности оставшихся участков обызвествленного межклеточного вещества хряща костную ткань.

Первичный, или диафизарный, центр окостенения. Процесс образования кости внутри хрящевого зачатка получил название эндохондрального окостенения (греч. endon - внутри).

Одновременно с процессом развития эндохондральной кости появляются и признаки ее разрушения остеокластами. Вследствие разрушения эндохон-дральной костной ткани образуются еще большие полости и пространства (полости резорбции) и, наконец, возникает костномозговая полость. Из проникшей сюда мезенхимы образуется строма костного мозга, в которой поселяются стволовые клетки крови и соединительной ткани. В это же время по периферии диафиза со стороны надкостницы возникают все новые и новые перекладины костной ткани. Костная ткань, разрастаясь в длину по направлению к эпифизам и увеличиваясь в толщину, образует плотный слой кости.

Организация периостальной кости протекает иначе, чем организация эндохондральной костной ткани. На месте разрушающейся грубоволокни-стой кости вокруг проникших сюда сосудов, которые идут вдоль длинной оси зачатка кости, начинают образовываться концентрические пластинки, состоящие из параллельно ориентированных тонких коллагеновых волокон и цементирующего межклеточного вещества. Так возникают первичные осте-оны. Просвет их широк, границы пластинок нерезко контурированы. Вслед за появлением первой генерации остеонов со стороны периоста начинается развитие наружных опоясывающих (генеральных) пластинок, окружающих кость в области диафиза. Вслед за диафизом центры окостенения появляются в эпифизах. Этому предшествуют сначала дифференцировка хондроцитов, их гипертрофия, сменяемая ухудшением питания, дистрофией и кальцинацией межклеточного вещества. В дальнейшем отмечается процесс окостенения, подобный описанному выше. Оссификация сопровождается врастанием в эпифизы сосудов.

В промежуточной области между диафизом и эпифизами сохраняется хрящевая ткань - метафизарный хрящ, являющийся зоной роста костей в длину.

Гистологическое строение трубчатой кости как органа

Трубчатая кость как орган в основном построена из пластинчатой костной ткани, кроме бугорков. Снаружи кость покрыта надкостницей, за исключением суставных поверхностей эпифизов, покрытых разновидностью гиалинового хряща.

Рис. 8.31. Строение трубчатой кости (по В. Г. Елисееву, Ю. И. Афанасьеву, Е. Ф. Котовскому):

а - надкостница; б - компактное вещество кости; в - эндост; г - костномозговая полость. 1 - слой наружных общих пластинок; 2 - остеон; 3 - канал остеона; 4 - вставочные пластинки; 5 - слой внутренних общих пластинок; 6 - костная тра-бекула губчатого вещества; 7 - волокнистый слой надкостницы; 8 - кровеносные сосуды надкостницы; 9 - прободающий канал; 10 - остеоциты

Надкостница, или периост (periosteum). В надкостнице различают два слоя: наружный (волокнистый) и внутренний (клеточный). Наружный слой образован в основном волокнистой соединительной тканью (рис. 8.31, 8.32). Внутренний слой содержит большое количество клеток: камбиальные клетки, преостеобласты и остеобласты различной степени дифференцировки. Камбиальные клетки веретеновидной формы имеют небольшой объем цитоплазмы и умеренно развитый синтетический аппарат. Преостеобласты - энергично пролиферирующие клетки овальной формы, способные синтезировать гликозаминогликаны. Остеобласты характеризуются хорошо развитым белок-синтезирующим (коллаген) аппаратом. Через надкостницу проходят питающие кость сосуды и нервы.

Надкостница связывает кость с окружающими тканями и принимает участие в ее трофике, развитии, росте и регенерации.

Строение диафиза. Компактное вещество, образующее диафиз кости, состоит из костных пластинок, толщина которых колеблется от 4 до 12-15 мкм. Костные пластинки располагаются в определенном порядке,

Рис. 8.32. Надкостница (по Ю. И. Афанасьеву):

1 - наружный (волокнистый) слой; 2 - внутренний (клеточный) слой; 3 - остеоген-ные клетки; 4 - костная ткань

образуя сложные системы. В диафизе различают три слоя: наружный слой опоясывающих (общих, генеральных) пластинок, средний, образованный концентрически напластованными вокруг сосудов костными пластинками - остеонами и называемый остеонным слоем (рис. 8.33), и внутренний слой опоясывающих (общих) пластинок.

Наружные пластинки не образуют полных колец вокруг диафиза кости, перекрываются на поверхности следующими слоями пластинок. Внутренние пластинки хорошо развиты только там, где компактное вещество кости непосредственно граничит с костномозговой полостью. В тех же местах, где компактное вещество переходит в губчатое, его внутренние общие пластинки продолжаются в пластинки перекладин губчатого вещества.

Наружные пластинки пронизаны прободающими (фолькмановыми) каналами, по которым из надкостницы внутрь кости входят сосуды. Со стороны надкостницы в кость под разными углами проникают коллагеновые волокна. Эти волокна получили название прободающих (шарпеевых) волокон. Чаще всего они разветвляются только в наружном слое общих пластинок, но могут проникать и в средний остеонный слой, однако они никогда не входят в пластинки остеонов.

В среднем слое костные концентрические (остеонные) пластинки формируют остеоны. Между остеонами располагаются промежуточные (вставочные) пластинки. Толщина и длина костных пластинок колеблются от нескольких десятков до сотен микрометров. Остеоны (гаверсовы системы) являются структурными единицами компактного вещества трубчатой кости (см. рис. 8.31, рис. 8.33). Они представляют собой цилиндрические образования, состоящие из концентрических костных пластинок, как бы вставленных друг в друга. В костных пластинках и между ними располагаются тела костных клеток и их отростки, замурованные в костном межклеточном веществе. Каждый остеон отграничен от соседних остеонов цементирующей (спайной) линией, образованной основным веществом. В центральном

Рис. 8.33. Остеон:

а - микрофотография (окраска по методу Шморля); б - сканирующая электронная микроскопия фрагмента кости (препарат О. В. Слесарева). 1 - канал остеона; 2 - остеоциты (лакуны - б); 3 - костные пластинки

канале остеона проходят кровеносные сосуды с сопровождающей их соединительной тканью и остеогенными клетками.

В диафизе длинной кости остеоны расположены преимущественно параллельно длинной оси. Каналы остеонов анастомозируют друг с другом, в местах анастомозов прилежащие к ним пластинки изменяют свое направление (см. рис. 8.31). Такие каналы называют прободающими, или питающими. Сосуды, расположенные в каналах остеонов, сообщаются друг с другом и с сосудами костного мозга и надкостницы. Большую часть диафиза составляет компактное вещество трубчатых костей. На внутренней поверхности диа-

физа, граничащей с костномозговой полостью, пластинчатая костная ткань образует костные перекладины губчатого вещества кости. Полость диафиза трубчатых костей заполнена костным мозгом.

Эндост (endosteum) - оболочка, покрывающая кость со стороны костномозговой полости. В эндосте сформированной поверхности кости различают осмиофильную линию на наружном крае минерализованного вещества кости; остеоидный слой, состоящий из аморфного вещества, коллагеновых фибрилл и остеобластов, кровеносных капилляров и нервных окончаний, слоя клеток, нечетко отделяющих эндост от элементов костного мозга. Толщина эндоста превышает 1-2 мкм, но меньше, чем у периоста.

В областях активного формирования кости толщина эндоста возрастает в 10-20 раз за счет остеоидного слоя вследствие повышения синтетической активности остеобластов и их предшественников. При ремоделировании кости в составе эндоста обнаруживаются остеокласты. В эндосте стареющей кости уменьшается популяция остеобластов и клеток-предшественников, но возрастает активность остеокластов, что ведет к истончению компактного слоя и перестройке губчатого вещества кости.

Между эндостом и периостом существует определенная микроциркуляция жидкости и минеральных веществ благодаря лакунарно-канальцевой системе костной ткани.

Васкуляризация костной ткани. Кровеносные сосуды образуют во внутреннем слое надкостницы густую сеть. Отсюда берут начало тонкие артериальные веточки, которые через питательные отверстия кровоснабжают остеоны, а потом проникают в костный мозг и принимают участие в образовании питающей его сети капилляров. Лимфатические сосуды располагаются главным образом в наружном слое надкостницы.

Иннервация костной ткани. В надкостнице миелиновые и безмиелино-вые нервные волокна образуют сплетение. Часть волокон сопровождают кровеносные сосуды и проникают с ними через питательные отверстия в одноименные каналы, а затем в каналы остеонов и далее достигают костного мозга. Другая часть волокон заканчиваются в надкостнице свободными нервными разветвлениями, а также участвуют в образовании инкапсулированных телец.

Рост трубчатых костей. Рост костей - процесс очень длительный. Он начинается у человека с ранних эмбриональных стадий и завершается в среднем к 20-летнему возрасту. В течение всего периода роста кость увеличивается как в длину, так и в ширину. Рост трубчатой кости в длину обеспечивается наличием метаэпифизарной хрящевой пластинки роста, в которой проявляются два противоположных гистогенетических процесса.

Один - это разрушение эпифизарной пластинки, а другой, противоположный ему, - непрестанное пополнение хрящевой ткани путем новообразования клеток. Однако со временем процессы разрушения клеток начинают преобладать над процессами новообразования, вследствие чего хрящевая пластинка истончается и исчезает. Рост кости в длину прекращается.

В метаэпифизарном хряще различают пограничную зону, зону столбчатых клеток и зону пузырчатых клеток. Пограничная зона, расположенная вблизи

эпифиза, состоит из округлых и овальных клеток и единичных изогенных групп, которые обеспечивают связь хрящевой пластинки с костью эпифиза. В полостях между костью и хрящом находятся кровеносные капилляры, обеспечивающие питанием клетки глубжележащих зон хрящевой пластинки. Зона столбчатых клеток содержит активно размножающиеся клетки, которые формируют колонки, расположенные вдоль продольной оси кости, и обеспечивают ее рост и длину. Проксимальные концы колонок состоят из созревающих, дифференцирующихся хрящевых клеток. Они богаты гликогеном и щелочной фосфатазой. Обе эти зоны наиболее реактивны при действии гормонов и других факторов, оказывающих влияние на процессы окостенения и роста костей. Зона пузырчатых клеток характеризуется гидратацией и разрушением хондроцитов с последующим эндохондральным окостенением. Дистальный отдел этой зоны граничит с диафизом, откуда в нее проникают кровеносные капилляры и остеогенные клетки. Продольно ориентированные колонки эндохондральной кости являются по существу костными трубочками, на месте которых формируются остеоны.

Впоследствии центры окостенения в диафизе и эпифизе сливаются, и рост кости в длину заканчивается.

Рост трубчатой кости в ширину осуществляется за счет периоста. Со стороны периоста очень рано начинают образовываться концентрические слои пластинчатой костной ткани. Этот аппозиционный рост продолжается до окончания формирования кости. Количество остеонов непосредственно после рождения невелико, но уже к 25 годам в длинных костях конечностей количество их значительно увеличивается.

Регенерация. Физиологическая регенерация костных тканей происходит медленно за счет остеогенных клеток надкостницы - эндоста и остеоген-ных клеток в канале остеона. Посттравматическая регенерация костной ткани протекает лучше в тех случаях, когда концы сломанной кости не смещены относительно друг друга. Процессу остеогенеза предшествует формирование соединительнотканной мозоли, в толще которой могут образовываться хрящевые островки (рис. 8.34). Оссификация в этом случае идет по типу вторичного (непрямого) остеогенеза. В условиях оптимальной окси-генации тканей, хорошей репозиции и фиксации концов сломанной кости регенерация происходит без образования мозоли. Однако прежде чем остеобласты начнут строить кость, остеокласты образуют небольшую щель между сопоставленными концами кости. На этой биологической закономерности основано применение травматологами аппаратов постепенного растягивания сращиваемых костей в течение всего периода регенерации.

Перестройка кости и факторы, влияющие на ее структуру

В костной ткани в течение всей жизни человека происходят взаимосвязанные процессы разрушения и созидания, обусловленные функциональными нагрузками и другими факторами внешней и внутренней среды. Перестройка остеонов всегда связана с разрушением первичных остеонов и одновременным образованием новых остеонов как на месте разрушения, так и со стороны периоста. Под влиянием остеокластов, активизированных

Рис. 8.34. Посттравматическая регенерация трубчатой кости: а - локализация травмы; б-г - последовательные стадии регенерации без жесткой фиксации репонированных костей (б1, в1 - фрагменты); д - регенерация после фиксации отломков. 1 - надкостница; 2 - перекладины из грубоволокни-стой костной ткани; 3 - соединительнотканный регенерат с островками хрящевой ткани; 4 - костный регенерат из грубово-локнистой костной ткани; 5 - линия сращения (по Р. В. Крстичу, с изменениями)

различными факторами, костные пластинки остеона разрушаются, и на его месте образуется полость. Этот процесс называется резорбцией (от лат. resorptia - рассасывание) костной ткани. В образовавшейся полости вокруг оставшегося сосуда появляются остеобласты и начинается построение новых пластинок, концентрически наслаивающихся друг на друга. Так возникают вторичные генерации остеонов. Между остеонами располагаются остатки разрушенных остеонов прежних генераций. Процесс перестройки остеонов не приостанавливается и после окончания роста кости.

Среди факторов, влияющих на перестройку костной ткани, существенную роль играет ее так называемый пьезоэлектрический эффект. Оказалось, что в костной пластинке при изгибах появляется определенная разность потенциалов между вогнутой и выпуклой стороной. Первая заряжается отрицательно,

а вторая - положительно. На отрицательно заряженной поверхности всегда отмечаются активация остеобластов и процесс аппозиционного новообразования костной ткани, а на положительно заряженной, напротив, наблюдается ее резорбция с помощью остеокластов. Искусственное создание разности потенциалов приводит к такому же результату (рис. 8.35). Нулевой потенциал, отсутствие физической нагрузки на костную ткань (продолжительная иммобилизация, пребывание в состоянии невесомости и др.) обусловливают повышение функций остеокластов и выведение солей.

На структуру костной ткани и костей оказывают влияние витамины (С, A, D), гормоны щитовидной, околощитовидной и других эндокринных желез.

В частности, при недостаточном количестве витамина С в организме (например, при цинге) подавляется образование коллагеновых волокон, ослабляется деятельность остеобластов, уменьшается их фосфатазная активность, что практически приводит к остановке роста кости вследствие торможения образования органической основы костных тканей. При дефиците витамина D (рахит) не происходит полной кальцификации органической матрицы кости, что обусловливает размягчение костей (остеомаляция). Витамин А поддерживает рост костей, но избыток этого витамина способствует усилению разрушения остеокластами метаэпифизарных хрящей - зоны роста костей и замедлению их удлинения.

При избытке гормона околощитовидной железы - паратирина - наблюдаются повышение активности остеокластов и резорбция кости. Тирокальцитонин, вырабатываемый С-клетками щитовидной железы, действует диаметрально противоположно, понижая функцию остеокластов, имеющих рецепторы этого гормона. При гипофункции щитовидной железы замедляется рост длинных трубчатых костей в результате подавления активности остеобластов и торможения процесса оссифи-кации. Регенерация кости в этом случае происходит слабо и неполноценно. В случае тестикулярной недоразвитости или препубертатной кастрации задерживается окостенение метаэпифизарной пластинки, вследствие чего руки и ноги у такого индивидуума становятся непропорционально длинными. При недостатке эстрогенов после наступления климактерического периода у женщин иногда развивается остеопороз. При раннем половом созревании намечается остановка роста из-за преждевременного диафизо-эпифизарного сращения костей. Определенную позитивную роль в росте костей играет соматотропный гормон аденогипофиза, который стимулирует пропорциональное развитие скелета в молодом (юношеском) возрасте и непропорциональное (акромегалия) у взрослых.

Возрастные изменения. Соединительные ткани с возрастом претерпевают изменения в строении, количестве и химическом составе. С возрастом увеличиваются общая масса соединительнотканных образований, рост костного скелета. Во многих разновидностях соединительнотканных структур изменяется соотношение типов коллагена, гликозаминогликанов; в частности, в них становится больше сульфатированных соединений.

Соединения костей

Две кости могут иметь соединения непрерывные (синдесмозы, синхондрозы и синостозы) и прерывистые (суставы).

Непрерывные соединения - соединения с помощью плотной волокнистой соединительной ткани, пучки которой в виде прободающих волокон внедряются в кост-

Рис. 8.35. Пьезоэлектрический эффект (пояснения в тексте): I - схема структурной организации костной трабекулы; II - активация остеокластов и остеобластов при изменении формы костной трабекулы; III - искусственное создание разности потенциалов (по Ю. И. Афанасьеву)

ную ткань. Примером таких соединений являются швы теменных костей черепа, соединительнотканная мембрана между лучевой и локтевой костями.

Синхондрозы (симфизы) - соединения при помощи хряща, например межпозвоночные диски. Они состоят из наружного фиброзного кольца и внутренней части, называемой пульпозным ядром. Обе эти части нерезко отделены и незаметно переходят друг в друга. Пульпозное ядро располагается во внутренней зоне межпозвоночного диска. В разные возрастные периоды оно имеет различное строение. В возрасте до 2 лет оно представляет собой полость с гомогенным содержимым, в котором находятся только отдельные клетки. В последующие годы жизни эта полость разделяется на отдельные камеры. С 6-8-летнего возраста в пуль-позном ядре отмечается появление, а затем и нарастание количества коллагено-вых волокон и хрящевых клеток. С 15 лет нарастание волокон и хрящевых клеток еще больше усиливается, и в возрасте 20-23 лет пульпозное ядро приобретает характерный вид волокнистого хряща. Примером другого, более плотного соединения может быть лобковый симфиз. К синхондрозам относятся также соединения эпифиза и диафиза с помощью метаэпифизарного хряща.

Синостозы - плотные соединения костей без волокнистой соединительной ткани, например тазовые кости.

Прерывистые соединения, или суставы (диартрозы), состоят из сочлененных поверхностей, покрытых хрящом, а в некоторых случаях из хрящевого промежуточного мениска и суставной сумки. Суставная капсула состоит из наружного фиброзного и внутреннего синовиального слоев. Под последним понимают пласт специфически дифференцированной соединительной ткани, содержащей кровеносные и лимфатические сосуды, нервные волокна и окончания. Пограничное положение этой соединительной ткани, несвойственное другим производным мезенхимы, постоянное растяжение, смещение и давление в связи с участием локомоторной функции сочленения определяют рост и ее структурные особенности.

В синовиальной оболочке млекопитающих и человека различают два волокнистых коллагеново-эластических слоя (поверхностный и глубокий) и выстилающий полость покровный слой (см. рис. 8.20). Резкой границы между слоями не существует. В крупных сочленениях отмечается богатый жировой тканью подсиновиальный слой, граничащий с фиброзной капсулой. Коллагеновые и эластические волокна поверхностного слоя ориентированы в направлении длинной оси сочленения. В глубоком слое они расположены под углом к волокнам поверхностного слоя.

Покровный слой синовиальной оболочки состоит из клеток - синовиоцитов. Различают макрофагальные синовиоциты и синовиальные фибробласты, которые обладают способностью к выработке и секреции гиалуроновой кислоты - специфического компонента синовиальной жидкости.

Кровеносные сосуды проникают в синовиальную оболочку со стороны подлежащих тканей и распределяются в ее толще, включая и покровный слой, где они располагаются непосредственно под синовиоцитами. Таким образом, синовиальная полость отделена от кровеносного русла только клетками, основным веществом соединительной ткани и эндотелием самих капилляров. Для эндотелия гемокапил-ляров синовиальных оболочек характерны фенестры и способность к фагоцитозу. Лимфатические капилляры располагаются всегда глубже кровеносных в пределах поверхностного волокнистого слоя.

Синовиальная оболочка богато иннервирована волокнами афферентной и эфферентной (симпатической) природы.

Контрольные вопросы

1. Мезенхима как источник развития соединительных тканей: понятие о дивергентной дифференцировке мезенхимы, морфологические признаки мезенхимы.

2. Соединительные ткани со специальными свойствами: классификация, топография в организме, строение, функции.

3. Клеточные диффероны рыхлой соединительной ткани: источники развития, строение, функции, участие в физиологической и репара-тивной регенерации.

4. Хрящевые ткани: классификация, топография, строение, функции, регенерация.

5. Костные ткани: прямой и непрямой остеогенез, строение, клеточно-дифферонный состав, регенерация.

YAmedik.org